# |
ODE |
Mathematica result |
Maple result |
\[ {}6 y+x y^{\prime } = 3 x y^{\frac {4}{3}} \] |
✓ |
✓ |
|
\[ {}y^{3} {\mathrm e}^{-2 x}+2 x y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{4}+1}\, y^{2} \left (y+x y^{\prime }\right ) = x \] |
✓ |
✓ |
|
\[ {}y^{3}+3 y^{2} y^{\prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y} x y^{\prime } = 2 \,{\mathrm e}^{y}+2 \,{\mathrm e}^{2 x} x^{3} \] |
✓ |
✓ |
|
\[ {}2 x \cos \relax (y) \sin \relax (y) y^{\prime } = 4 x^{2}+\sin ^{2}\relax (y) \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = -1+x \,{\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x -y+\left (-x +6 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+\frac {y}{x}+\left (\ln \relax (x )+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{x y} y+\left ({\mathrm e}^{x y} x +2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x )+\ln \relax (y)+\left ({\mathrm e}^{y}+\frac {x}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\arctan \relax (y)+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+4 x y^{3}+y^{4}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \sin \relax (y)+\tan \relax (y)+\left ({\mathrm e}^{x} \cos \relax (y)+x \left (\sec ^{2}\relax (y)\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}\frac {2 x^{\frac {5}{2}}-3 y^{\frac {5}{3}}}{2 x^{\frac {5}{2}} y^{\frac {2}{3}}}+\frac {\left (-2 x^{\frac {5}{2}}+3 y^{\frac {5}{3}}\right ) y^{\prime }}{3 x^{\frac {3}{2}} y^{\frac {5}{3}}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+3 y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2}+x y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+2 x y^{3}+\left (\sin \relax (y)+3 x^{2} y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y+x^{4} y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}2 x y+x^{2} y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = 6 x^{2} \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x y+3 y^{2} \] |
✓ |
✓ |
|
\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \] |
✗ |
✗ |
|
\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \] |
✓ |
✓ |
|
\[ {}3 y+y^{\prime } = 3 x^{2} {\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+{\mathrm e}^{x y} y+\left ({\mathrm e}^{y}+{\mathrm e}^{x y} x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \] |
✓ |
✓ |
|
\[ {}3 y+x y^{\prime } = \frac {3}{x^{\frac {3}{2}}} \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y+\left (x^{2}-1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 12 x^{4} y^{\frac {2}{3}}+6 y \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y}+\cos \relax (x ) y+\left ({\mathrm e}^{y} x +\sin \relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{2}+x^{\frac {3}{2}} y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}2 y+\left (x +1\right ) y^{\prime } = 3+3 x \] |
✓ |
✓ |
|
\[ {}9 \sqrt {x}\, y^{\frac {4}{3}}-12 x^{\frac {1}{5}} y^{\frac {3}{2}}+\left (8 x^{\frac {3}{2}} y^{\frac {1}{3}}-15 x^{\frac {6}{5}} \sqrt {y}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = 2 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y+\left (1+2 x \right ) y^{\prime } = \left (1+2 x \right )^{\frac {3}{2}} \] | ✓ | ✓ |
|
\[ {}y^{\prime } = 3 x^{2} \left (7+y\right ) \] | ✓ | ✓ |
|
\[ {}y^{\prime } = 3 x^{2} \left (7+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x y+x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +3 y}{-3 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x +2 x y}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cot \relax (x ) \left (\sqrt {y}-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \] |
✓ |
✓ |
|
\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 3 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 12 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = 6 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = 6 x +4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|