2.132 Problems 13101 to 13200

Table 2.263: Main lookup table

#

ODE

Mathematica result

Maple result

13101

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

13102

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

13103

\[ {}x y^{\prime } = 2 y-6 x^{3} \]

13104

\[ {}x y^{\prime } = 2 y^{2}-6 y \]

13105

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

13106

\[ {}y^{\prime } = \sqrt {x +y} \]

13107

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

13108

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

13109

\[ {}y^{\prime } = y^{2}-2 x y+x^{2} \]

13110

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

13111

\[ {}y^{2} x -6+x^{2} y y^{\prime } = 0 \]

13112

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

13113

\[ {}3 y-x^{3}+x y^{\prime } = 0 \]

13114

\[ {}1+2 y^{2} x +\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

13115

\[ {}3 x y^{3}-y+x y^{\prime } = 0 \]

13116

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

13117

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

13118

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

13119

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

13120

\[ {}y^{\prime } = \frac {3 y}{1+x}-y^{2} \]

13121

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

13122

\[ {}\sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

13123

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

13124

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

13125

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]

13126

\[ {}y^{\prime } = \frac {2 y+x}{-y+2 x} \]

13127

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

13128

\[ {}y^{\prime } = y^{2} x +3 y^{2}+x +3 \]

13129

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

13130

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

13131

\[ {}y^{2}+1-y^{\prime } = 0 \]

13132

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

13133

\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \]

13134

\[ {}\left (2+x \right ) y^{\prime }-x^{3} = 0 \]

13135

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

13136

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

13137

\[ {}2 y-6 x +\left (1+x \right ) y^{\prime } = 0 \]

13138

\[ {}y^{2} x +\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

13139

\[ {}y^{\prime } y-y^{2} x = 6 x \,{\mathrm e}^{4 x^{2}} \]

13140

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

13141

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

13142

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

13143

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

13144

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

13145

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

13146

\[ {}y^{2} {\mathrm e}^{y^{2} x}-2 x +2 x y \,{\mathrm e}^{y^{2} x} y^{\prime } = 0 \]

13147

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

13148

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

13149

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

13150

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

13151

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

13152

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

13153

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

13154

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

13155

\[ {}y^{\prime \prime } = y^{\prime } \]

13156

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

13157

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

13158

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

13159

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

13160

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

13161

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

13162

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

13163

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

13164

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13165

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

13166

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13167

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

13168

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13169

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

13170

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

13171

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

13172

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

13173

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13174

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

13175

\[ {}y^{\prime \prime } = y^{\prime } \]

13176

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y^{\prime } y \]

13177

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

13178

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

13179

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

13180

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

13181

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

13182

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13183

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13184

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

13185

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

13186

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

13187

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

13188

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

13189

\[ {}y^{\prime \prime } = y^{\prime } \]

13190

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

13191

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13192

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

13193

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]

13194

\[ {}2 x y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{2} \]

13195

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

13196

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y^{\prime } y \]

13197

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]

13198

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13199

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13200

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]