2.138 Problems 13701 to 13800

Table 2.275: Main lookup table

#

ODE

Mathematica result

Maple result

13701

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 1-2 x \left (t \right )] \]

13702

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )] \]

13703

\[ {}[t x^{\prime }\left (t \right )+2 x \left (t \right ) = 15 y \left (t \right ), t y^{\prime }\left (t \right ) = x \left (t \right )] \]

13704

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

13705

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

13706

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

13707

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

13708

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )] \]

13709

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

13710

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

13711

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13712

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

13713

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )-17, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-13] \]

13714

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )+7 \,{\mathrm e}^{2 t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-7 \,{\mathrm e}^{2 t}] \]

13715

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )-6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+2 \,{\mathrm e}^{3 t}] \]

13716

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+24 t] \]

13717

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+19 \cos \left (4 t \right )-13 \sin \left (4 t \right )] \]

13718

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )+5 \operatorname {Heaviside}\left (t -2\right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+17 \operatorname {Heaviside}\left (t -2\right )] \]

13719

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

13720

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )] \]

13721

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )+4, y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )+5] \]

13722

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )] \]

13723

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

13724

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

13725

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

13726

\[ {}y^{\prime } y+y^{4} = \sin \left (x \right ) \]

13727

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

13728

\[ {}{y^{\prime }}^{2}+y = 0 \]

13729

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

13730

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

13731

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

13732

\[ {}2 x -1-y^{\prime } = 0 \]

13733

\[ {}2 x -y-y^{\prime } y = 0 \]

13734

\[ {}y^{\prime }+2 y = 0 \]

13735

\[ {}y^{\prime }+x y = 0 \]

13736

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

13737

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13738

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

13739

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

13740

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

13741

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

13742

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

13743

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

13744

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

13745

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

13746

\[ {}y^{\prime } = -\frac {x}{y} \]

13747

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

13748

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

13749

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

13750

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

13751

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

13752

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

13753

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

13754

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

13755

\[ {}y^{\prime } = x \ln \left (x \right ) \]

13756

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

13757

\[ {}y^{\prime } = \frac {-10-2 x}{\left (2+x \right ) \left (x -4\right )} \]

13758

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

13759

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

13760

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{\frac {3}{2}} \]

13761

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

13762

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

13763

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

13764

\[ {}y^{\prime }+2 y = 0 \]

13765

\[ {}y^{\prime }+y = \sin \left (t \right ) \]

13766

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13767

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

13768

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

13769

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

13770

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

13771

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

13772

\[ {}y^{\prime } = 4 x^{3}-x +2 \]

13773

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

13774

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

13775

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]

13776

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

13777

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

13778

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

13779

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

13780

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13781

\[ {}4 x \left (y^{2}+x^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

13782

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]

13783

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

13784

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

13785

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

13786

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

13787

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

13788

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

13789

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

13790

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

13791

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

13792

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

13793

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

13794

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

13795

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

13796

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

13797

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

13798

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

13799

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

13800

\[ {}y^{\prime }+2 y = x^{2} \]