2.139 Problems 13801 to 13867

Table 2.277: Main lookup table

#

ODE

Mathematica result

Maple result

13801

\[ {}y^{\prime \prime }+4 y = t \]

13802

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

13803

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]

13804

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (-3+x \right )^{\frac {2}{3}}} \]

13805

\[ {}y^{\prime }+t^{2} = y^{2} \]

13806

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

13807

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

13808

\[ {}y^{\prime } = y^{\frac {1}{5}} \]

13809

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]

13810

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]

13811

\[ {}y^{\prime } = y \sqrt {t} \]

13812

\[ {}y^{\prime } = 6 y^{\frac {2}{3}} \]

13813

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (t \right ) \]

13814

\[ {}t y^{\prime } = y \]

13815

\[ {}y^{\prime } = y \tan \left (t \right ) \]

13816

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]

13817

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

13818

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

13819

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

13820

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]

13821

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

13822

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

13823

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

13824

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]

13825

\[ {}t y^{\prime }+y = t^{3} \]

13826

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]

13827

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]

13828

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]

13829

\[ {}y^{\prime }+\frac {y}{-3+t} = \frac {1}{t -1} \]

13830

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{2+t} \]

13831

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

13832

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

13833

\[ {}t y^{\prime }+y = \sin \left (t \right ) t \]

13834

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]

13835

\[ {}y^{\prime } = y^{2} \]

13836

\[ {}y^{\prime } = t y^{2} \]

13837

\[ {}y^{\prime } = -\frac {t}{y} \]

13838

\[ {}y^{\prime } = -y^{3} \]

13839

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

13840

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

13841

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

13842

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

13843

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

13844

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

13845

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

13846

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

13847

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

13848

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

13849

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

13850

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

13851

\[ {}y^{\prime }+k y = 0 \]

13852

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

13853

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

13854

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

13855

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

13856

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

13857

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

13858

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

13859

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

13860

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

13861

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

13862

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

13863

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

13864

\[ {}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

13865

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

13866

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

13867

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]