2.2 Problems 101 to 200

Table 2.3: Main lookup table

#

ODE

Mathematica result

Maple result

101

\[ {}6 y+x y^{\prime } = 3 x y^{\frac {4}{3}} \]

102

\[ {}y^{3} {\mathrm e}^{-2 x}+2 x y^{\prime } = 2 x y \]

103

\[ {}\sqrt {x^{4}+1}\, y^{2} \left (y+x y^{\prime }\right ) = x \]

104

\[ {}y^{3}+3 y^{2} y^{\prime } = {\mathrm e}^{-x} \]

105

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

106

\[ {}{\mathrm e}^{y} x y^{\prime } = 2 \,{\mathrm e}^{y}+2 \,{\mathrm e}^{2 x} x^{3} \]

107

\[ {}2 x \cos \left (y\right ) \sin \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

108

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = -1+x \,{\mathrm e}^{-y} \]

109

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

110

\[ {}4 x -y+\left (-x +6 y\right ) y^{\prime } = 0 \]

111

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

112

\[ {}3 x^{2}+2 y^{2} x +\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

113

\[ {}x^{3}+\frac {y}{x}+\left (\ln \left (x \right )+y^{2}\right ) y^{\prime } = 0 \]

114

\[ {}1+{\mathrm e}^{x y} y+\left ({\mathrm e}^{x y} x +2 y\right ) y^{\prime } = 0 \]

115

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left ({\mathrm e}^{y}+\frac {x}{y}\right ) y^{\prime } = 0 \]

116

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

117

\[ {}3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+4 x y^{3}+y^{4}\right ) y^{\prime } = 0 \]

118

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

119

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0 \]

120

\[ {}\frac {2 x^{\frac {5}{2}}-3 y^{\frac {5}{3}}}{2 x^{\frac {5}{2}} y^{\frac {2}{3}}}+\frac {\left (-2 x^{\frac {5}{2}}+3 y^{\frac {5}{3}}\right ) y^{\prime }}{3 x^{\frac {3}{2}} y^{\frac {5}{3}}} = 0 \]

121

\[ {}x^{3}+3 y-x y^{\prime } = 0 \]

122

\[ {}3 y^{2}+y^{2} x -x^{2} y^{\prime } = 0 \]

123

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

124

\[ {}{\mathrm e}^{x}+2 x y^{3}+\left (\sin \left (y\right )+3 x^{2} y^{2}\right ) y^{\prime } = 0 \]

125

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

126

\[ {}2 y^{2} x +x^{2} y^{\prime } = y^{2} \]

127

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

128

\[ {}2 x y+x^{2} y^{\prime } = y^{2} \]

129

\[ {}2 y+x y^{\prime } = 6 x^{2} \sqrt {y} \]

130

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

131

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

132

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

133

\[ {}y^{\prime } = 1+x^{2}+y^{2}+y^{4} x^{2} \]

134

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

135

\[ {}3 y+y^{\prime } = 3 x^{2} {\mathrm e}^{-3 x} \]

136

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

137

\[ {}{\mathrm e}^{x}+{\mathrm e}^{x y} y+\left ({\mathrm e}^{y}+{\mathrm e}^{x y} x \right ) y^{\prime } = 0 \]

138

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

139

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

140

\[ {}3 y+x y^{\prime } = \frac {3}{x^{\frac {3}{2}}} \]

141

\[ {}\left (x -1\right ) y+\left (x^{2}-1\right ) y^{\prime } = 1 \]

142

\[ {}x y^{\prime } = 12 x^{4} y^{\frac {2}{3}}+6 y \]

143

\[ {}{\mathrm e}^{y}+\cos \left (x \right ) y+\left ({\mathrm e}^{y} x +\sin \left (x \right )\right ) y^{\prime } = 0 \]

144

\[ {}9 x^{2} y^{2}+x^{\frac {3}{2}} y^{\prime } = y^{2} \]

145

\[ {}2 y+\left (1+x \right ) y^{\prime } = 3+3 x \]

146

\[ {}9 \sqrt {x}\, y^{\frac {4}{3}}-12 x^{\frac {1}{5}} y^{\frac {3}{2}}+\left (8 x^{\frac {3}{2}} y^{\frac {1}{3}}-15 x^{\frac {6}{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

147

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

148

\[ {}y+x y^{\prime } = 2 \,{\mathrm e}^{2 x} \]

149

\[ {}y+\left (1+2 x \right ) y^{\prime } = \left (1+2 x \right )^{\frac {3}{2}} \]

150

\[ {}y^{\prime } = 3 x^{2} \left (7+y\right ) \]

151

\[ {}y^{\prime } = 3 x^{2} \left (7+y\right ) \]

152

\[ {}y^{\prime } = -x y+x y^{3} \]

153

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

154

\[ {}y^{\prime } = \frac {x +3 y}{-3 x +y} \]

155

\[ {}y^{\prime } = \frac {2 x +2 x y}{x^{2}+1} \]

156

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

157

\[ {}y^{\prime \prime }-y = 0 \]

158

\[ {}y^{\prime \prime }-9 y = 0 \]

159

\[ {}y^{\prime \prime }+4 y = 0 \]

160

\[ {}y^{\prime \prime }+25 y = 0 \]

161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

162

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

163

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

164

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]

165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

166

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

167

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

168

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

169

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

170

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

171

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

172

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

173

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

174

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

175

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

176

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

177

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

178

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

179

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

180

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

181

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

182

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

183

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

184

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

185

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

186

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

187

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

188

\[ {}y^{\prime \prime }+y = 3 x \]

189

\[ {}y^{\prime \prime }-4 y = 12 \]

190

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]

191

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]

192

\[ {}y^{\prime \prime }+2 y = 4 \]

193

\[ {}y^{\prime \prime }+2 y = 6 x \]

194

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

195

\[ {}y^{\prime \prime }-4 y = 0 \]

196

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

197

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \]

198

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

199

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

200

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]