# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = 1+2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (-2+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\sqrt {2+x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sqrt {x^{2}+9} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {10}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\sin \left (x \right )-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\sin \left (x \right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x +y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2+x^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}2 x y+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{2} x +y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right ) y \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime } = 4 y \] |
✓ |
✓ |
|
\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 \left (x y\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x \sec \left (y\right ) \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (y+1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = x \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (-y+2 y^{3}\right )} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x +y+x y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y+4 y x^{3} \] |
✓ |
✓ |
|
\[ {}1+y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}\tan \left (x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = 2 x^{2} y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y^{2} x +3 x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 6 \,{\mathrm e}^{-y+2 x} \] |
✓ |
✓ |
|
\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}3 y+y^{\prime } = 2 x \,{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}-2 x y+y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = 3 x \] |
✓ |
✓ |
|
\[ {}y+2 x y^{\prime } = 10 \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y+2 x y^{\prime } = 10 \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y+3 x y^{\prime } = 12 x \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}-3 y+2 x y^{\prime } = 9 x^{3} \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = 3 x y \] |
✓ |
✓ |
|
\[ {}3 y+x y^{\prime } = 2 x^{5} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}-3 y+x y^{\prime } = x^{3} \] |
✓ |
✓ |
|
\[ {}2 x y+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right ) \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}y+\left (1+x \right ) y^{\prime } = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{3} \cos \left (x \right )+2 y \] |
✓ |
✓ |
|
\[ {}\cot \left (x \right ) y+y^{\prime } = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x +y+x y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{4} \cos \left (x \right )+3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \,{\mathrm e}^{x^{2}} x^{2}+2 x y \] |
✓ |
✓ |
|
\[ {}\left (2 x -3\right ) y+x y^{\prime } = 4 x^{4} \] |
✓ |
✓ |
|
\[ {}3 x y+\left (x^{2}+4\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}3 y x^{3}+\left (x^{2}+1\right ) y^{\prime } = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = -y+x \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime } = y^{2}+x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+2 \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}\left (-y+x \right ) y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}x \left (x +y\right ) y^{\prime } = y \left (-y+x \right ) \] |
✓ |
✓ |
|
\[ {}\left (2 y+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = {\mathrm e}^{\frac {y}{x}} x^{2}+x y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x y+y^{2} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = x^{2}+3 y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}}+y \] |
✓ |
✓ |
|
\[ {}x +y^{\prime } y = \sqrt {y^{2}+x^{2}} \] |
✓ |
✓ |
|
\[ {}y \left (3 x +y\right )+x \left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x +y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (4 x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+x^{2} y^{\prime } = 5 y^{3} \] |
✓ |
✓ |
|
\[ {}2 x y^{3}+y^{2} y^{\prime } = 6 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+y^{3} \] |
✓ |
✓ |
|
\[ {}2 x y+x^{2} y^{\prime } = 5 y^{4} \] |
✓ |
✓ |
|
|
|||
|
|||