# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = \left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 x}}{y \,{\mathrm e}^{-x}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-2 y^{\frac {3}{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (y^{2} x +1\right )^{2}}{y x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-x^{2} y^{2}-y^{2} x}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x^{3} a \ln \left (1+x \right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (1+x \right )-x^{2} y^{2}-y^{2} x}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 x^{2} y^{2}+7 y^{2} x}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+a \,x^{2} y^{2}+a x y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 a}{x \left (-x y+2 a x y^{2}-8 a^{2}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (1+x \right ) x \right ) y x^{4}-\ln \left (\left (1+x \right ) x \right ) x^{3}\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+\sqrt {y^{2}+x^{2}}\, x^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+\ln \left (\left (x -1\right ) \left (1+x \right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (1+x \right )\right ) x y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{3} x \,{\mathrm e}^{2 x^{2}}}{y \,{\mathrm e}^{x^{2}}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y-\ln \left (\frac {1+x}{x -1}\right ) x^{3}+\ln \left (\frac {1+x}{x -1}\right ) x y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {1+x}{x -1}} x^{3}+{\mathrm e}^{\frac {1+x}{x -1}} x y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y-y-{\mathrm e}^{1+x} x^{3}+{\mathrm e}^{1+x} x y^{2}}{\left (x -1\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4+4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x^{3} \sqrt {y^{2}+x^{2}}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+x^{4}+x^{3}+x^{2} y^{2}+y^{2} x}{\ln \left (x -1\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+{\mathrm e}^{1+x} x^{3}+7 \,{\mathrm e}^{1+x} x y^{2}}{\ln \left (x -1\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3+3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x \left (y^{2} x +1+x \right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x \,{\mathrm e}^{x}-2 x -\ln \left (x \right )-1+x^{4} \ln \left (x \right )+x^{4}-2 y x^{2} \ln \left (x \right )-2 x^{2} y+y^{2} \ln \left (x \right )+y^{2}}{{\mathrm e}^{x}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+x y-x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-y^{2} x}{\left (-{\mathrm e}^{x}+x \right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \ln \left (x \right ) x -y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \left (x \right )\right ) x \left (y+1\right )^{2}}{8} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \left (x \right )\right )^{2} x \left (y+1\right )^{2}}{16} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = \frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (1+x \right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-\ln \left (x \right )+{\mathrm e}^{\frac {1}{x}}+4 x^{2} y+2 x +2 y^{2} x +2 x^{3}}{\ln \left (x \right )-{\mathrm e}^{\frac {1}{x}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-b y a +b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2 x +2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (1+x \right ) y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{2 x^{2}}+y^{3} {\mathrm e}^{3 x^{2}}\right ) {\mathrm e}^{-x^{2}} x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (1+x \right ) y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (18 x^{\frac {3}{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 a}{y+2 a y^{4}-16 a^{2} x y^{2}+32 a^{3} x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-\ln \left (x \right )+2 \ln \left (2 x \right ) x y+\ln \left (2 x \right )+\ln \left (2 x \right ) y^{2}+\ln \left (2 x \right ) x^{2}}{\ln \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {b y a -c b +b^{2} x +b a \sqrt {x}-a^{2}}{a \left (a y-c +b x +a \sqrt {x}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (2 x +2+y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x^{3}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (-y+x \right )}{x \left (x -y^{3}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (2 y^{\frac {3}{2}}-3 \,{\mathrm e}^{x}\right )^{3} {\mathrm e}^{x}}{4 \left (2 y^{\frac {3}{2}}-3 \,{\mathrm e}^{x}+2\right ) \sqrt {y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+y^{2} x +2 x y^{3}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x^{2}-x -a x -a +2 x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 x +2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x \sin \left (x \right )-\ln \left (2 x \right )+\ln \left (2 x \right ) x^{4}-2 \ln \left (2 x \right ) x^{2} y+\ln \left (2 x \right ) y^{2}}{\sin \left (x \right )} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = \frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \left (x \right )\right )^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (-1+x -2 x y+2 x^{3}\right )}{x^{2}-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 a}{-x^{2} y+2 a y^{4} x^{2}-16 a^{2} x y^{2}+32 a^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x y+2 y^{2} x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y^{4}-2 x^{2} y^{2}+x^{4}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{\frac {5}{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {i \left (8 i x +16 y^{4}+8 x^{2} y^{2}+x^{4}\right )}{32 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{-y+x^{4}+2 x^{2} y^{2}+y^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {i \left (i x +x^{4}+2 x^{2} y^{2}+y^{4}\right )}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y^{3}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-y+x \right )^{2} \left (x +y\right )^{2} x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x^{2}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (y\right ) \left (\cos \left (y\right ) x^{3}-x -1\right )}{\left (x \sin \left (y\right )-1\right ) \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+x^{3}+y^{2} x +y^{3}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{\frac {3}{2}}}{y^{\frac {3}{2}}+x^{2}-2 x y+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x^{3} y+x^{6}+x^{2} y^{2}+y^{3}}{x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-4 x y+x^{3}+2 x^{2}-4 x -8}{-8 y+2 x^{2}+4 x -8} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (2 x +2+x^{3} y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {i \left (54 i x^{2}+81 y^{4}+18 x^{4} y^{2}+x^{8}\right ) x}{243 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (y^{2} x +1\right )^{3}}{x^{4} \left (y^{2} x +1+x \right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-4 x y-x^{3}+4 x^{2}-4 x +8}{8 y+2 x^{2}-8 x +8} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-x \right ) y}{x \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{4}\right ) y}{x \left (1+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (1+x \right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (1+x \right )}{x}\right ) x y\right )}{x} \] |
✓ |
✓ |
|
|
|||
|
|||