6.158 Problems 15701 to 15800

Table 6.315: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15701

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

15702

\[ {} y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

15703

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

15704

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

15705

\[ {} {y^{\prime }}^{2}+y = 0 \]

15706

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

15707

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15708

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

15709

\[ {} 2 x -1-y^{\prime } = 0 \]

15710

\[ {} 2 x -y-y y^{\prime } = 0 \]

15711

\[ {} y^{\prime }+2 y = 0 \]

15712

\[ {} y^{\prime }+x y = 0 \]

15713

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

15714

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15715

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

15716

\[ {} x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

15717

\[ {} x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

15718

\[ {} y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

15719

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

15720

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15721

\[ {} x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

15722

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

15723

\[ {} y^{\prime } = -\frac {x}{y} \]

15724

\[ {} 3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

15725

\[ {} y^{\prime } = -\frac {2 y}{x}-3 \]

15726

\[ {} y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

15727

\[ {} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

15728

\[ {} y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

15729

\[ {} y^{\prime } = x \sin \left (x^{2}\right ) \]

15730

\[ {} y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

15731

\[ {} y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

15732

\[ {} y^{\prime } = x \ln \left (x \right ) \]

15733

\[ {} y^{\prime } = x \,{\mathrm e}^{-x} \]

15734

\[ {} y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

15735

\[ {} y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

15736

\[ {} y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

15737

\[ {} y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

15738

\[ {} y^{\prime } = \frac {1}{x^{2}-16} \]

15739

\[ {} y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

15740

\[ {} y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

15741

\[ {} y^{\prime }+2 y = 0 \]

15742

\[ {} y^{\prime }+y = \sin \left (t \right ) \]

15743

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15744

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

15745

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15746

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

15747

\[ {} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

15748

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

15749

\[ {} y^{\prime } = 4 x^{3}-x +2 \]

15750

\[ {} y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

15751

\[ {} y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

15752

\[ {} y^{\prime } = \frac {\ln \left (x \right )}{x} \]

15753

\[ {} y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

15754

\[ {} y^{\prime } = \frac {2 x y+y^{2}}{x^{2}} \]

15755

\[ {} x y^{\prime }+y = \cos \left (x \right ) \]

15756

\[ {} 16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15757

\[ {} [x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

15758

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15759

\[ {} y^{\prime } = \sin \left (x \right )^{4} \]

15760

\[ {} y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

15761

\[ {} [x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

15762

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

15763

\[ {} y^{\prime }+\cos \left (x \right ) y = 0 \]

15764

\[ {} y^{\prime }-y = \sin \left (x \right ) \]

15765

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15766

\[ {} y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

15767

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

15768

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

15769

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = x \]

15770

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

15771

\[ {} 2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

15772

\[ {} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

15773

\[ {} y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

15774

\[ {} y^{\prime } = x^{2} \sin \left (x \right ) \]

15775

\[ {} y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

15776

\[ {} y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

15777

\[ {} y^{\prime }+2 y = x^{2} \]

15778

\[ {} y^{\prime \prime }+4 y = t \]

15779

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

15780

\[ {} y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]

15781

\[ {} y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]

15782

\[ {} y^{\prime }+t^{2} = y^{2} \]

15783

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15784

\[ {} y^{\prime } = y+\frac {1}{1-t} \]

15785

\[ {} y^{\prime } = y^{{1}/{5}} \]

15786

\[ {} \frac {y^{\prime }}{t} = \sqrt {y} \]

15787

\[ {} y^{\prime } = 4 t^{2}-t y^{2} \]

15788

\[ {} y^{\prime } = y \sqrt {t} \]

15789

\[ {} y^{\prime } = 6 y^{{2}/{3}} \]

15790

\[ {} t y^{\prime } = y \]

15791

\[ {} y^{\prime } = y \tan \left (t \right ) \]

15792

\[ {} y^{\prime } = \frac {1}{t^{2}+1} \]

15793

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15794

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15795

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15796

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15797

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15798

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15799

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15800

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]