6.162 Problems 16101 to 16200

Table 6.323: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

16101

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

16102

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

16103

\[ {}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0 \]

16104

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

16105

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

16106

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

16107

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

16108

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

16109

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

16110

\[ {}y^{\prime }+2 y = t^{2} \sqrt {y} \]

16111

\[ {}y^{\prime }-2 y = t^{2} \sqrt {y} \]

16112

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]

16113

\[ {}t +y-t y^{\prime } = 0 \]

16114

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]

16115

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]

16116

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]

16117

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]

16118

\[ {}y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]

16119

\[ {}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

16120

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

16121

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

16122

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

16123

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

16124

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{4} \]

16125

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

16126

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

16127

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

16128

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

16129

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

16130

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

16131

\[ {}y = {y^{\prime }}^{2} t +3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

16132

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

16133

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

16134

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

16135

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]

16136

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]

16137

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

16138

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

16139

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

16140

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

16141

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

16142

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

16143

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

16144

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

16145

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

16146

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

16147

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

16148

\[ {}y-x +y^{\prime } = 0 \]

16149

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

16150

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

16151

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

16152

\[ {}t^{2}-y+\left (-t +y\right ) y^{\prime } = 0 \]

16153

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

16154

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

16155

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

16156

\[ {}y^{\prime }+y = 5 \]

16157

\[ {}y^{\prime }+t y = t \]

16158

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

16159

\[ {}t r^{\prime }+r = \cos \left (t \right ) t \]

16160

\[ {}y^{\prime }-y = t y^{3} \]

16161

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

16162

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

16163

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

16164

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

16165

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

16166

\[ {}2 x -y-2+\left (-x +2 y\right ) y^{\prime } = 0 \]

16167

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]

16168

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]

16169

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]

16170

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]

16171

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]

16172

\[ {}y^{\prime } = y^{2}-x \]

16173

\[ {}y^{\prime } = \sqrt {x -y} \]

16174

\[ {}y^{\prime } = t y^{3} \]

16175

\[ {}y^{\prime } = \frac {t}{y^{3}} \]

16176

\[ {}y^{\prime } = -\frac {y}{t -2} \]

16177

\[ {}y^{\prime \prime }-y = 0 \]

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16182

\[ {}y^{\prime \prime }+9 y = 0 \]

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

16185

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

16190

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16191

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16192

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16193

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16194

\[ {}y^{\prime \prime }+9 y = 0 \]

16195

\[ {}y^{\prime \prime }+49 y = 0 \]

16196

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

16197

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

16198

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

16199

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]