6.159 Problems 15801 to 15900

Table 6.317: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15801

\[ {} t y^{\prime }+y = t^{3} \]

15802

\[ {} t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]

15803

\[ {} 2 y^{\prime }+t y = \ln \left (t \right ) \]

15804

\[ {} y^{\prime }+y \sec \left (t \right ) = t \]

15805

\[ {} y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]

15806

\[ {} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]

15807

\[ {} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

15808

\[ {} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

15809

\[ {} t y^{\prime }+y = t \sin \left (t \right ) \]

15810

\[ {} y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]

15811

\[ {} y^{\prime } = y^{2} \]

15812

\[ {} y^{\prime } = t y^{2} \]

15813

\[ {} y^{\prime } = -\frac {t}{y} \]

15814

\[ {} y^{\prime } = -y^{3} \]

15815

\[ {} y^{\prime } = \frac {x}{y^{2}} \]

15816

\[ {} \frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

15817

\[ {} y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

15818

\[ {} y^{\prime } = \frac {1+y^{2}}{y} \]

15819

\[ {} 6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

15820

\[ {} \frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

15821

\[ {} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

15822

\[ {} y^{\prime } = \frac {1+y}{t +1} \]

15823

\[ {} y^{\prime } = \frac {y+2}{1+2 t} \]

15824

\[ {} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

15825

\[ {} 3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

15826

\[ {} \cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

15827

\[ {} y^{\prime }+k y = 0 \]

15828

\[ {} \left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

15829

\[ {} \cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

15830

\[ {} y^{\prime } = {\mathrm e}^{2 y+10 t} \]

15831

\[ {} y^{\prime } = {\mathrm e}^{3 y+2 t} \]

15832

\[ {} \sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

15833

\[ {} 3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

15834

\[ {} x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

15835

\[ {} \left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

15836

\[ {} y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

15837

\[ {} \tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

15838

\[ {} y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

15839

\[ {} x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

15840

\[ {} \frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

15841

\[ {} \frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

15842

\[ {} y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

15843

\[ {} \frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

15844

\[ {} y^{\prime } = \frac {5^{-t}}{y^{2}} \]

15845

\[ {} y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

15846

\[ {} y^{\prime } = y^{2}-3 y+2 \]

15847

\[ {} 4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

15848

\[ {} y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right ) \]

15849

\[ {} y^{\prime } = y^{3}+1 \]

15850

\[ {} y^{\prime } = y^{3}-1 \]

15851

\[ {} y^{\prime } = y^{3}+y \]

15852

\[ {} y^{\prime } = y^{3}-y^{2} \]

15853

\[ {} y^{\prime } = y^{3}-y \]

15854

\[ {} y^{\prime } = y^{3}+y \]

15855

\[ {} y^{\prime } = x^{3} \]

15856

\[ {} y^{\prime } = \cos \left (t \right ) \]

15857

\[ {} 1 = \cos \left (y\right ) y^{\prime } \]

15858

\[ {} \sin \left (y \right )^{2} = x^{\prime } \]

15859

\[ {} y^{\prime } = \frac {\sqrt {t}}{y} \]

15860

\[ {} y^{\prime } = \sqrt {\frac {y}{t}} \]

15861

\[ {} y^{\prime } = \frac {{\mathrm e}^{t}}{1+y} \]

15862

\[ {} y^{\prime } = {\mathrm e}^{t -y} \]

15863

\[ {} y^{\prime } = \frac {y}{\ln \left (y\right )} \]

15864

\[ {} y^{\prime } = t \sin \left (t^{2}\right ) \]

15865

\[ {} y^{\prime } = \frac {1}{x^{2}+1} \]

15866

\[ {} y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]

15867

\[ {} y^{\prime } = \frac {3+y}{3 x +1} \]

15868

\[ {} y^{\prime } = {\mathrm e}^{x -y} \]

15869

\[ {} y^{\prime } = {\mathrm e}^{2 x -y} \]

15870

\[ {} y^{\prime } = \frac {3 y+1}{x +3} \]

15871

\[ {} y^{\prime } = y \cos \left (t \right ) \]

15872

\[ {} y^{\prime } = y^{2} \cos \left (t \right ) \]

15873

\[ {} y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]

15874

\[ {} y^{\prime }+f \left (t \right ) y = 0 \]

15875

\[ {} y^{\prime } = -\frac {y-2}{x -2} \]

15876

\[ {} y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

15877

\[ {} y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

15878

\[ {} y^{\prime } = \left (x +y-4\right )^{2} \]

15879

\[ {} y^{\prime } = \left (3 y+1\right )^{4} \]

15880

\[ {} y^{\prime } = 3 y \]

15881

\[ {} y^{\prime } = -y \]

15882

\[ {} y^{\prime } = y^{2}-y \]

15883

\[ {} y^{\prime } = 16 y-8 y^{2} \]

15884

\[ {} y^{\prime } = 12+4 y-y^{2} \]

15885

\[ {} y^{\prime } = f \left (t \right ) y \]

15886

\[ {} y^{\prime }-y = 10 \]

15887

\[ {} y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

15888

\[ {} y^{\prime }-y = 2 \cos \left (t \right ) \]

15889

\[ {} y^{\prime }-y = t^{2}-2 t \]

15890

\[ {} y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

15891

\[ {} t y^{\prime }+y = t^{2} \]

15892

\[ {} t y^{\prime }+y = t \]

15893

\[ {} x y^{\prime }+y = x \,{\mathrm e}^{x} \]

15894

\[ {} x y^{\prime }+y = {\mathrm e}^{-x} \]

15895

\[ {} y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

15896

\[ {} y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

15897

\[ {} y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

15898

\[ {} y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

15899

\[ {} y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

15900

\[ {} y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]