6.160 Problems 15901 to 16000

Table 6.319: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15901

\[ {} y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

15902

\[ {} y^{\prime }+2 \cot \left (x \right ) y = \cos \left (x \right ) \]

15903

\[ {} y^{\prime }+x y = x^{3} \]

15904

\[ {} y^{\prime }-x y = x \]

15905

\[ {} y^{\prime } = \frac {1}{x +y^{2}} \]

15906

\[ {} y^{\prime }-x = y \]

15907

\[ {} y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

15908

\[ {} x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

15909

\[ {} p^{\prime } = t^{3}+\frac {p}{t} \]

15910

\[ {} v^{\prime }+v = {\mathrm e}^{-s} \]

15911

\[ {} y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

15912

\[ {} y^{\prime }+y = {\mathrm e}^{-t} \]

15913

\[ {} y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]

15914

\[ {} y^{\prime }+2 t y = 2 t \]

15915

\[ {} t y^{\prime }+y = \cos \left (t \right ) \]

15916

\[ {} t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]

15917

\[ {} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]

15918

\[ {} \left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]

15919

\[ {} x^{\prime } = x+t +1 \]

15920

\[ {} y^{\prime } = {\mathrm e}^{2 t}+2 y \]

15921

\[ {} y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

15922

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

15923

\[ {} y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

15924

\[ {} y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

15925

\[ {} y^{\prime }-y = \sin \left (2 t \right ) \]

15926

\[ {} y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

15927

\[ {} y^{\prime }+y = {\mathrm e}^{-t} \]

15928

\[ {} y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

15929

\[ {} y^{\prime }-5 y = t \]

15930

\[ {} y^{\prime }+3 y = 27 t^{2}+9 \]

15931

\[ {} y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

15932

\[ {} y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

15933

\[ {} y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

15934

\[ {} y^{\prime }-3 y = 27 t^{2} \]

15935

\[ {} y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

15936

\[ {} y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

15937

\[ {} y^{\prime }+y = 2 \cos \left (t \right )+t \]

15938

\[ {} y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]

15939

\[ {} y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]

15940

\[ {} t y^{\prime }+y = t \cos \left (t \right ) \]

15941

\[ {} y^{\prime }+y = t \]

15942

\[ {} y^{\prime }+y = \sin \left (t \right ) \]

15943

\[ {} y^{\prime }+y = \cos \left (t \right ) \]

15944

\[ {} y^{\prime }+y = {\mathrm e}^{t} \]

15945

\[ {} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

15946

\[ {} \frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

15947

\[ {} y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

15948

\[ {} y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

15949

\[ {} 3 t y^{2}+y^{3} y^{\prime } = 0 \]

15950

\[ {} t -y \sin \left (t \right )+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

15951

\[ {} y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

15952

\[ {} \ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

15953

\[ {} {\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

15954

\[ {} 3 t^{2}-y^{\prime } = 0 \]

15955

\[ {} -1+3 y^{2} y^{\prime } = 0 \]

15956

\[ {} y^{2}+2 t y y^{\prime } = 0 \]

15957

\[ {} \frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

15958

\[ {} 2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

15959

\[ {} -\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

15960

\[ {} 2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

15961

\[ {} 2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

15962

\[ {} \sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

15963

\[ {} 3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

15964

\[ {} {\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

15965

\[ {} 3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

15966

\[ {} -2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

15967

\[ {} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

15968

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

15969

\[ {} 2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

15970

\[ {} \left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

15971

\[ {} \frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

15972

\[ {} -\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

15973

\[ {} 2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

15974

\[ {} 2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]

15975

\[ {} 1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]

15976

\[ {} 2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]

15977

\[ {} 1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]

15978

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

15979

\[ {} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]

15980

\[ {} y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]

15981

\[ {} \cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]

15982

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

15983

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

15984

\[ {} -2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

15985

\[ {} -4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]

15986

\[ {} t^{2} y+t^{3} y^{\prime } = 0 \]

15987

\[ {} y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

15988

\[ {} y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

15989

\[ {} 2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

15990

\[ {} y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

15991

\[ {} 5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

15992

\[ {} 5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

15993

\[ {} 2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

15994

\[ {} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

15995

\[ {} -1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

15996

\[ {} 2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

15997

\[ {} \frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

15998

\[ {} 2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

15999

\[ {} y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

16000

\[ {} y^{\prime }+y = t y^{2} \]