6.29 Problems 2801 to 2900

Table 6.57: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

2801

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

2802

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

2803

\[ {}[x^{\prime }\left (t \right ) = -7 x \left (t \right )+y \left (t \right )-6 z \left (t \right ), y^{\prime }\left (t \right ) = 10 x \left (t \right )-4 y \left (t \right )+12 z \left (t \right ), z^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

2804

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right )] \]

2805

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

2806

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-2 z \left (t \right )] \]

2807

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ), z^{\prime }\left (t \right ) = 2 h \left (t \right ), h^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

2808

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+h \left (t \right ), z^{\prime }\left (t \right ) = 2 h \left (t \right ), h^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

2809

\[ {}x^{\prime } = x \left (1-x\right ) \]

2810

\[ {}x^{\prime } = -x \left (1-x\right ) \]

2811

\[ {}x^{\prime } = x^{2} \]

2812

\[ {}\left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2813

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+5] \]

2814

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2816

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

2817

\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {}[x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2819

\[ {}[x^{\prime }\left (t \right ) = {\mathrm e}^{y \left (t \right )}-x \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{x \left (t \right )}+y \left (t \right )] \]

2820

\[ {}z^{\prime \prime }+z^{3} = 0 \]

2821

\[ {}z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {}z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2823

\[ {}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {}z^{\prime \prime }+z-2 z^{3} = 0 \]

2825

\[ {}[x_{1}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right )] \]

2826

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 8 x_{1} \left (t \right )-6 x_{2} \left (t \right )] \]

2827

\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \]

2828

\[ {}[x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-6 x_{2} \left (t \right )] \]

2829

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -8 x_{1} \left (t \right )+4 x_{2} \left (t \right )] \]

2830

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2831

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

2832

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2833

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

2834

\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -9 x_{1} \left (t \right )] \]

2835

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2836

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2837

\[ {}y^{\prime \prime }-\lambda y = 0 \]

2838

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2839

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (\lambda +1\right ) y = 0 \]

2840

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2841

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2844

\[ {}y+x y^{\prime } = 0 \]

2845

\[ {}y^{\prime } = 2 x y \]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

2848

\[ {}\left (1+x \right ) y^{\prime }-1+y = 0 \]

2849

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

2853

\[ {}y+x y^{\prime } = y^{2} \]

2854

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2855

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

2856

\[ {}y+x y^{\prime } = x y \left (y^{\prime }-1\right ) \]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

2861

\[ {}y^{\prime } = \frac {y}{x} \]

2862

\[ {}x y^{\prime }+2 y = 0 \]

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]

2866

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1 \]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]

2868

\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]

2871

\[ {}x +y = x y^{\prime } \]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

2873

\[ {}x y^{\prime }-y = \sqrt {x y} \]

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

2875

\[ {}x y^{\prime }-y = \sqrt {x^{2}-y^{2}} \]

2876

\[ {}x +y y^{\prime } = 2 y \]

2877

\[ {}x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0 \]

2878

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

2880

\[ {}y+x y^{\prime } = 2 \sqrt {x y} \]

2881

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (y^{2}+x y+x^{2}\right ) = 0 \]

2883

\[ {}x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0 \]

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

2885

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

2887

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]

2891

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

2894

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

2895

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

2896

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

2897

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

2898

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

2899

\[ {}y^{\prime } = \frac {x +y-1}{-y+x -1} \]

2900

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]