5.2.9 Problems 801 to 900

Table 5.185: Second order linear ODE

#

ODE

Mathematica

Maple

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x^{2} \]

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

3245

\[ {}y^{\prime \prime } = k^{2} y \]

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

3266

\[ {}y^{\prime \prime } = y \]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3484

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

3485

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

3486

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

3487

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

3488

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3489

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

3493

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

3494

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

3496

\[ {}y^{\prime \prime }-y = x^{n} \]

3497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

3500

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

3558

\[ {}y^{\prime \prime }-25 y = 0 \]

3559

\[ {}y^{\prime \prime }+4 y = 0 \]

3560

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3563

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

3564

\[ {}y^{\prime \prime }-9 y = 0 \]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

3566

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3567

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

3568

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

3569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

3570

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+y a b = 0 \]

3571

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

3572

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

3573

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

3574

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

3576

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

3585

\[ {}y^{\prime \prime } = x^{n} \]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

3590

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

3591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

3592

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) x^{2} \]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

3696

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

3697

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

3698

\[ {}y^{\prime \prime }-36 y = 0 \]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

3707

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

3711

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

3712

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

3716

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

3717

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

3718

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

3719

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

3720

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

3724

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]

3725

\[ {}y^{\prime \prime }-y = 9 \,{\mathrm e}^{2 x} x \]

3726

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]

3727

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]

3728

\[ {}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m} \]

3729

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

3732

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

3733

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

3734

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

3735

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

3736

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3737

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

3738

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

3739

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

3740

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \sin \left (x \right ) {\mathrm e}^{-x} \]

3741

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

3742

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

3743

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

3744

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

3745

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

3746

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

3747

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

3748

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

3749

\[ {}y^{\prime \prime }-4 y = \frac {8}{1+{\mathrm e}^{2 x}} \]

3750

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

3751

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

3752

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

3753

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]