5.2.10 Problems 901 to 1000

Table 5.187: Second order linear ODE

#

ODE

Mathematica

Maple

3754

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

3755

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

3756

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

3757

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

3758

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

3759

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

3760

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

3761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

3762

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

3767

\[ {}y^{\prime \prime }-9 y = F \left (x \right ) \]

3768

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right ) \]

3769

\[ {}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right ) \]

3770

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right ) \]

3771

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 \,{\mathrm e}^{2 x} x \]

3772

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

3773

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

3774

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

3775

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right ) \]

3776

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2} \]

3777

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

3778

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

3779

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

3781

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

3782

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]

3783

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3784

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3785

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

3786

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

3787

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

3788

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

3789

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

3790

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

3791

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4} \]

3792

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x} \]

3793

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

3794

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]

3798

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x} \]

3802

\[ {}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x} \]

3803

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

3804

\[ {}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x} \]

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

3806

\[ {}y^{\prime \prime }+4 y = \ln \left (x \right ) \]

3807

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x} \]

3808

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

3809

\[ {}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \]

3935

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3936

\[ {}y^{\prime \prime }+4 y = 0 \]

3937

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \]

3938

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 36 \]

3939

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t} \]

3940

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]

3941

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]

3942

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]

3943

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]

3944

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t} \]

3945

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]

3946

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]

3947

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]

3948

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]

3949

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]

3950

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]

3951

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]

3952

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]

3953

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]

3954

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]

3955

\[ {}y^{\prime \prime }-y = 0 \]

3963

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right ) \]

3964

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]

3965

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

3966

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right ) \]

3967

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]

3968

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{1-t} \]

3969

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]

3970

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]

3977

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right ) \]

3978

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]

3979

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]

3980

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]

3981

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]

3982

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]

3983

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]

3984

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]

3985

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]

4118

\[ {}y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

4119

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

4120

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4121

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4122

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4123

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

4125

\[ {}y^{\prime \prime }+25 y = 0 \]

4126

\[ {}4 y^{\prime \prime }+y^{\prime }+y = 0 \]

4127

\[ {}y^{\prime \prime } = 0 \]

4128

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

4129

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

4130

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

4131

\[ {}y^{\prime \prime }+y = x^{3}+x \]

4132

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]