5.2.18 Problems 1701 to 1800

Table 5.203: Second order linear ODE

#

ODE

Mathematica

Maple

8293

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

8294

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

8295

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

8296

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

8297

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8298

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

8299

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

8300

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

8301

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

8302

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

8303

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

8304

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

8305

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

8306

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

8307

\[ {}y^{\prime \prime }+y = 0 \]

8308

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8309

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

8310

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

8328

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8329

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]

8330

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]

8331

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]

8335

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8339

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]

8340

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

8341

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]

8342

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8344

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]

8345

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]

8346

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8351

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

8352

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

8353

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]

8354

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

8355

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]

8358

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]

8359

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]

8360

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

8361

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]

8363

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]

8364

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]

8367

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]

8368

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]

8369

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]

8370

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]

8371

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]

8372

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

8373

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]

8374

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]

8375

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]

8376

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

8377

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8378

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

8502

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

8529

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

8530

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

8531

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

8532

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

8606

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

8607

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

8608

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

8609

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

8610

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

8611

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

8612

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

8613

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

8614

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

8626

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

8657

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8705

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

8706

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

8707

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

8708

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8754

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

8755

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

8761

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

8764

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

8766

\[ {}y^{\prime \prime } = 0 \]

8767

\[ {}y^{\prime \prime } = 1 \]

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

8769

\[ {}y^{\prime \prime } = k \]

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

8773

\[ {}y y^{\prime \prime } = 0 \]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]