5.3.53 Problems 5201 to 5300

Table 5.389: Second order ode

#

ODE

Mathematica

Maple

16293

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]

16294

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]

16295

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16296

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

16297

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16298

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ -2 \pi +2 t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16299

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16305

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

16306

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

16307

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

16308

\[ {}y^{\prime \prime }+4 y = 1 \]

16309

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

16310

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

16311

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

16312

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

16313

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16314

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

16315

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

16316

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

16317

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

16318

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

16319

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

16320

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

16321

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

16322

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

16323

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

16324

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16325

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

16326

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

16327

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

16328

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

16329

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

16330

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

16331

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

16332

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

16333

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

16334

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

16335

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

16336

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

16337

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

16338

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16339

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

16340

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

16341

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

16342

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16343

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

16344

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

16345

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

16346

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16347

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

16348

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

16349

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

16350

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

16351

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

16352

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

16353

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

16354

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16355

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16356

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16357

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

16358

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]

16359

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16361

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16363

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16365

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16366

\[ {}\left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16405

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

16440

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16441

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16442

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16443

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16444

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

16445

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16446

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16447

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16448

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16449

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

16450

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16451

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16460

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16461

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16462

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16463

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16464

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16465

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16466

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16467

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16470

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16471

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16472

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16473

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16478

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16479

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16480

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]

16481

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16482

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16483

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]