5.3.54 Problems 5301 to 5400

Table 5.391: Second order ode

#

ODE

Mathematica

Maple

16484

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16489

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16490

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16491

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16492

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16493

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16494

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16495

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16496

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16497

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16498

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16499

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16561

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16562

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16575

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16578

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16579

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

16581

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

16582

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

16583

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

16584

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16593

\[ {}y^{\prime \prime }-4 y = t \]

16594

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

16595

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

16596

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]

16597

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16598

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

16599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16600

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16607

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16608

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16611

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16612

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16613

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16622

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16640

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

16906

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

16908

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

16911

\[ {}y^{\prime \prime }+y = 0 \]

16912

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

16913

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16914

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]