5.3.55 Problems 5401 to 5500

Table 5.393: Second order ode

#

ODE

Mathematica

Maple

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16926

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16929

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16930

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16931

\[ {}y^{\prime \prime } = \sqrt {-{y^{\prime }}^{2}+1} \]

16932

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16933

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16934

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]

16936

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16937

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16939

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

16940

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

16941

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

16942

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

16943

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

16944

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16945

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16946

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16947

\[ {}y^{3} y^{\prime \prime } = -1 \]

16948

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } y^{2} \]

16949

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

16950

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

16952

\[ {}y^{\prime \prime }-y = 0 \]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

16974

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

16975

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

16976

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

16977

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

16978

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

16979

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

16980

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

16981

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

16982

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

16983

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

16984

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

16985

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

16986

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

16987

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

16988

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

16989

\[ {}y^{\prime \prime }+k^{2} y = k \]

17010

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

17011

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

17012

\[ {}y^{\prime \prime }+9 y = 9 \]

17018

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

17019

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

17020

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

17021

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

17022

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

17023

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

17024

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

17025

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

17026

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

17027

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

17028

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

17029

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

17030

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

17031

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

17032

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

17033

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

17034

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \left (\cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

17035

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

17036

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

17037

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

17038

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

17039

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

17042

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

17044

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

17045

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

17049

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

17050

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

17051

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

17052

\[ {}y^{\prime \prime }-y = x +\sin \left (x \right ) \]

17053

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

17056

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

17057

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

17058

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

17059

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

17060

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

17061

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

17062

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

17063

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

17064

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

17066

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

17068

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

17069

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

17070

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

17071

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]