5.24.40 Problems 3901 to 4000

Table 5.1093: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

19344

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

19345

\[ {}\left (2 x +5\right )^{2} y^{\prime \prime }-6 \left (2 x +5\right ) y^{\prime }+8 y = 0 \]

19346

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

19347

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

19348

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19350

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19351

\[ {}y^{\prime \prime \prime } x +\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19352

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x \]

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19357

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

19359

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

19360

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2 \]

19361

\[ {}x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19362

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

19365

\[ {}y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

19369

\[ {}x^{3} y^{\prime \prime \prime } = 1 \]

19371

\[ {}y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

19375

\[ {}y^{3} y^{\prime \prime } = a \]

19377

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19378

\[ {}y^{\prime \prime } = y^{3}-y \]

19379

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

19380

\[ {}y^{\prime \prime } = x y^{\prime } \]

19381

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

19384

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+a x = 0 \]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = a x \]

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19389

\[ {}y^{\prime \prime \prime } x -x y^{\prime \prime }-y^{\prime } = 0 \]

19390

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19393

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

19394

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19395

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

19398

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19399

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19401

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

19402

\[ {}y^{\prime \prime \prime } y^{\prime \prime } = 2 \]

19403

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19404

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19405

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19406

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19407

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19408

\[ {}y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19412

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19413

\[ {}x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = -x y^{\prime }+y \]

19415

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19416

\[ {}2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19417

\[ {}x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19418

\[ {}x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19419

\[ {}x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19420

\[ {}x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19421

\[ {}y^{\prime \prime } = {\mathrm e}^{y} \]

19424

\[ {}x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

19426

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19428

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19429

\[ {}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19430

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19432

\[ {}2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

19433

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19434

\[ {}\left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19435

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19436

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

19437

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19438

\[ {}\left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

19439

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19440

\[ {}y^{\prime \prime }+x y^{\prime }-y = X \]

19441

\[ {}y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19443

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = {\mathrm e}^{x} x^{3} \]

19444

\[ {}y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

19445

\[ {}\left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

19446

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19447

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19448

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19449

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

19450

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

19451

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19452

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

19453

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

19454

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

19455

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19456

\[ {}y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

19457

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]