5.24.39 Problems 3801 to 3900

Table 5.1091: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

18950

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

18951

\[ {}\sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

18952

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2} \]

18953

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

18955

\[ {}x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

18958

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

18959

\[ {}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

18960

\[ {}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

18961

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

18962

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18963

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18964

\[ {}2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18966

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18967

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18971

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18972

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

18973

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18975

\[ {}y^{\prime \prime \prime } y^{\prime \prime } = 2 \]

18982

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

18984

\[ {}\left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y = 0 \]

18985

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

18987

\[ {}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18988

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

18991

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

18992

\[ {}y^{\prime \prime \prime } x -x y^{\prime \prime }-y^{\prime } = 0 \]

18994

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

18997

\[ {}y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

18998

\[ {}y^{\prime \prime } \sin \left (x \right )^{2} = 2 y \]

19000

\[ {}y^{3} y^{\prime \prime } = a \]

19002

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19003

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

19004

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19006

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19008

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19009

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19014

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

19015

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

19016

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19021

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

19022

\[ {}y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

19023

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19024

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19025

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19026

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

19027

\[ {}x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

19029

\[ {}y^{\prime \prime }+x y^{\prime }-y = f \left (x \right ) \]

19030

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19031

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19032

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19033

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19034

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

19045

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

19315

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19316

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19318

\[ {}x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19319

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2} \]

19320

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

19321

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19323

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

19324

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

19326

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

19327

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

19328

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

19329

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

19330

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

19331

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

19332

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

19333

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

19334

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

19335

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

19336

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 4 x \]

19337

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19338

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

19339

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = x^{2}+\frac {1}{x^{2}} \]

19340

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

19341

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19342

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

19343

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]