4.116 Problems 11501 to 11600

Table 4.231: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

11501

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

11502

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

11503

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

11504

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

11505

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

11506

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

11507

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

11508

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]

11509

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]

11510

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

11511

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

11512

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]

11513

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

11514

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]

11515

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

11516

\[ {}x^{\prime \prime }-2 x = 1 \]

11517

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (-1+t \right ) \]

11518

\[ {}x^{\prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]

11519

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (-1+t \right ) \]

11520

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

11521

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]

11522

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (-1+t \right ) \]

11523

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]

11524

\[ {}x^{\prime }+3 x = \delta \left (-1+t \right )+\operatorname {Heaviside}\left (t -4\right ) \]

11525

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]

11526

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]

11527

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]

11528

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]

11529

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (-1+t \right ) \]

11530

\[ {}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]

11531

\[ {}[x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )] \]

11532

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

11533

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

11534

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

11535

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

11536

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

11537

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

11538

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

11539

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

11540

\[ {}[x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

11541

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

11542

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 y \left (t \right )] \]

11543

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

11544

\[ {}[x^{\prime }\left (t \right ) = -6 y \left (t \right ), y^{\prime }\left (t \right ) = 6 y \left (t \right )] \]

11545

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-14] \]

11546

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-1] \]

11547

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

11548

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

11549

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

11550

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )] \]

11551

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

11552

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

11553

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

11554

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

11555

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

11556

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

11557

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )] \]

11558

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

11559

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

11560

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

11561

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

11562

\[ {}[x^{\prime }\left (t \right ) = 9 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

11563

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

11564

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

11565

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+2] \]

11566

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

11567

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\cos \left (t w \right )] \]

11568

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+3, y^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )+2 t] \]

11569

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )] \]

11570

\[ {}y^{\prime }+y = 1+x \]

11571

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

11572

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

11573

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

11574

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

11575

\[ {}x y^{\prime }+y = y^{3} x^{3} \]

11576

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

11577

\[ {}y^{\prime }+4 x y = 8 x \]

11578

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

11579

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

11580

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

11581

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

11582

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{-2 x} x \]

11583

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

11584

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

11585

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

11586

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

11587

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

11588

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

11589

\[ {}y^{\prime \prime }+y = 0 \]

11590

\[ {}y^{\prime \prime }+y = 0 \]

11591

\[ {}y^{\prime \prime }+y = 0 \]

11592

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

11593

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]

11594

\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \]

11595

\[ {}y^{\prime } = y^{\frac {1}{3}} \]

11596

\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

11597

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

11598

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

11599

\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

11600

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]