# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}x \ln \left (x \right ) y^{\prime }-\left (\ln \left (x \right )+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 1-x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{3}+y^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {| y|} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{3 y+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (y-1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{y-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{1-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x y\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y}{x}+y^{\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y-5 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y+b \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y+\frac {1}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{-1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{-1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2 y+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y+x \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y \left (y+2 x \right )}{x \left (2 y+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{-1+x}+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x -y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (2 x -1\right )+x \left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{-1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +y \] |
✓ |
✓ |
|