4.126 Problems 12501 to 12600

Table 4.251: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

12501

\[ {}y^{\prime \prime } = 9 y \]

12502

\[ {}y^{\prime \prime }+y = 0 \]

12503

\[ {}y^{\prime \prime }-y = 0 \]

12504

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

12505

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12506

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

12507

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

12508

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

12509

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

12510

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

12511

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12512

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

12513

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

12514

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

12515

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

12516

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

12517

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

12518

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

12519

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]

12520

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

12521

\[ {}y^{\prime \prime }-y = 5 x +2 \]

12522

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

12523

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

12524

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

12525

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

12526

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = \cos \left (x \right ) {\mathrm e}^{-x} \]

12527

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

12528

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

12529

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

12530

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

12531

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

12532

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]

12533

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

12534

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

12535

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{\frac {3}{2}}} \]

12536

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )+1, y^{\prime }\left (t \right ) = 1+x \left (t \right )] \]

12537

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12538

\[ {}[4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

12539

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

12540

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

12541

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

12542

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

12543

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

12544

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

12545

\[ {}y^{\prime \prime }-4 y = \sin \left (2 x \right ) {\mathrm e}^{2 x} \]

12546

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

12547

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

12548

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

12549

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+6 y \left (t \right )] \]

12550

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-10 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

12551

\[ {}[x^{\prime }\left (t \right ) = 12 x \left (t \right )+18 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )-12 y \left (t \right )] \]

12552

\[ {}y^{\prime } = x +y^{2} \]

12553

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]

12554

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

12555

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12556

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

12557

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

12558

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

12559

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

12560

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )] \]

12561

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

12562

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

12563

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

12564

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

12565

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )] \]

12566

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

12567

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )] \]

12568

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

12569

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

12570

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

12571

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

12572

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

12573

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12574

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12575

\[ {}-y+x y^{\prime } = 0 \]

12576

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

12577

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12578

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

12579

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

12580

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

12581

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

12582

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

12583

\[ {}y^{\prime }-y^{2} = 1 \]

12584

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12585

\[ {}x y^{\prime }-\sin \left (x \right ) = 0 \]

12586

\[ {}y^{\prime }+3 y = 0 \]

12587

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

12588

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12589

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

12590

\[ {}2 x y^{\prime }-y = 0 \]

12591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

12592

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

12593

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

12594

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

12595

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

12596

\[ {}{y^{\prime }}^{2} = x^{6} \]

12597

\[ {}y^{\prime }-2 x y = 0 \]

12598

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

12599

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

12600

\[ {}y^{\prime } = x \sqrt {y} \]