4.131 Problems 13001 to 13100

Table 4.261: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13001

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

13002

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

13003

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

13004

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

13005

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

13006

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

13007

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

13008

\[ {}y^{\prime } = -\frac {y}{t +1}+t^{2} \]

13009

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

13010

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

13011

\[ {}y^{\prime }-\frac {2 y}{t} = {\mathrm e}^{t} t^{3} \]

13012

\[ {}y^{\prime } = -\frac {y}{t +1}+2 \]

13013

\[ {}y^{\prime } = \frac {y}{t +1}+4 t^{2}+4 t \]

13014

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

13015

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

13016

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]

13017

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]

13018

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

13019

\[ {}y^{\prime } = t^{2} y+4 \]

13020

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

13021

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

13022

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

13023

\[ {}y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t \]

13024

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

13025

\[ {}y^{\prime } = t^{r} y+4 \]

13026

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

13027

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

13028

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

13029

\[ {}y^{\prime } = 3 y \]

13030

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

13031

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

13032

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (-1+t \right ) \left (3-y\right )} \]

13033

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

13034

\[ {}y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

13035

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

13036

\[ {}y^{\prime } = 3-2 y \]

13037

\[ {}y^{\prime } = t y \]

13038

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

13039

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

13040

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

13041

\[ {}y^{\prime } = t +\frac {2 y}{t +1} \]

13042

\[ {}y^{\prime } = 3+y^{2} \]

13043

\[ {}y^{\prime } = 2 y-y^{2} \]

13044

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

13045

\[ {}x^{\prime } = -x t \]

13046

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]

13047

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]

13048

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]

13049

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]

13050

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]

13051

\[ {}y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}} \]

13052

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]

13053

\[ {}y^{\prime } = 1-y^{2} \]

13054

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]

13055

\[ {}y^{\prime } = y^{2}-2 y+1 \]

13056

\[ {}y^{\prime } = \left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \]

13057

\[ {}y^{\prime } = \left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

13058

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

13059

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

13060

\[ {}y^{\prime } = 3-y^{2} \]

13061

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13062

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

13063

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13064

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

13065

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13066

\[ {}\left [x^{\prime }\left (t \right ) = 3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 \pi y \left (t \right )-\frac {x \left (t \right )}{3}\right ] \]

13067

\[ {}\left [p^{\prime }\left (t \right ) = 3 p \left (t \right )-2 q \left (t \right )-7 r \left (t \right ), q^{\prime }\left (t \right ) = -2 p \left (t \right )+6 r \left (t \right ), r^{\prime }\left (t \right ) = \frac {73 q \left (t \right )}{100}+2 r \left (t \right )\right ] \]

13068

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 \pi y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

13069

\[ {}[x^{\prime }\left (t \right ) = \beta y \left (t \right ), y^{\prime }\left (t \right ) = \gamma x \left (t \right )-y \left (t \right )] \]

13070

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13071

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

13072

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )] \]

13073

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

13074

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13075

\[ {}[x^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right ) = x \left (t \right )] \]

13076

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

13077

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

13078

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

13079

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

13080

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}, y^{\prime }\left (t \right ) = x \left (t \right )-\frac {y \left (t \right )}{2}\right ] \]

13081

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )] \]

13082

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13083

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

13084

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13085

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

13086

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13087

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13088

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13089

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13090

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13091

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13092

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13093

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13094

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13095

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13096

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13097

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13098

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

13099

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

13100

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]