4.137 Problems 13601 to 13700

Table 4.273: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13601

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13602

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13603

\[ {}y^{\prime \prime }+25 y = 0 \]

13604

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13605

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13606

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13607

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

13608

\[ {}4 y^{\prime \prime }+y = 0 \]

13609

\[ {}y^{\prime \prime }+16 y = 0 \]

13610

\[ {}y^{\prime \prime }+16 y = 0 \]

13611

\[ {}y^{\prime \prime }+16 y = 0 \]

13612

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13613

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13614

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13615

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13616

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13617

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

13618

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

13619

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

13620

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

13621

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

13622

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

13623

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

13624

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13625

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

13626

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

13627

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13628

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

13629

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13630

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

13631

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

13632

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

13633

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

13634

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

13635

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

13636

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

13637

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

13638

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

13639

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

13640

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

13641

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

13642

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

13643

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

13644

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

13645

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

13646

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13647

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

13648

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

13649

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13650

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

13651

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

13652

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

13653

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

13654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13655

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13656

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

13657

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

13658

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

13659

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

13660

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

13661

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13662

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13663

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

13664

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13665

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

13666

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13667

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13668

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13669

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

13670

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

13671

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

13672

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

13673

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13674

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13675

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13676

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13677

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13678

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13679

\[ {}y^{\prime \prime }-9 y = 36 \]

13680

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

13681

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

13682

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

13683

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

13684

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

13685

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

13686

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

13687

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

13688

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

13689

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

13690

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

13691

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

13692

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

13693

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

13694

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

13695

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

13696

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

13697

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

13698

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

13699

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

13700

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]