4.139 Problems 13801 to 13900

Table 4.277: Main lookup table sequentially arranged




#

ODE

Mathematica

Maple





13801

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]





13802

\[ {}y^{\prime \prime }-36 y = 0 \]





13803

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]





13804

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]





13805

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]





13806

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]





13807

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]





13808

\[ {}y^{\prime \prime }+3 y = 0 \]





13809

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]





13810

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]





13811

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]





13812

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]





13813

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]





13814

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]





13815

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]





13816

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]





13817

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]





13818

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]





13819

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]





13820

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]





13821

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]





13822

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]





13823

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]





13824

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]





13825

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]





13826

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]





13827

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]





13828

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]





13829

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]





13830

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]





13831

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]





13832

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]





13833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]





13834

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]





13835

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]





13836

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]





13837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]





13838

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]





13839

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]





13840

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]





13841

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]





13842

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]





13843

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]





13844

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 \sin \left (3 x \right ) x \]





13845

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]





13846

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]





13847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]





13848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]





13849

\[ {}y^{\prime }+4 y = 0 \]





13850

\[ {}y^{\prime }-2 y = t^{3} \]





13851

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]





13852

\[ {}y^{\prime \prime }-4 y = t^{3} \]





13853

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]





13854

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13855

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]





13856

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]





13857

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]





13858

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]





13859

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13860

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13861

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]





13862

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]





13863

\[ {}y^{\prime \prime }-9 y = 0 \]





13864

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]





13865

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]





13866

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]





13867

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]





13868

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]





13869

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]





13870

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]





13871

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]





13872

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]





13873

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13874

\[ {}y^{\prime \prime }+4 y = 1 \]





13875

\[ {}y^{\prime \prime }+4 y = t \]





13876

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]





13877

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13878

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]





13879

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]





13880

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]





13881

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]





13882

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]





13883

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]





13884

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]





13885

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]





13886

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]





13887

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]





13888

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]





13889

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13890

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13891

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13892

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]





13893

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]





13894

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]





13895

\[ {}y^{\prime \prime } = \delta \left (-1+t \right )-\delta \left (t -4\right ) \]





13896

\[ {}y^{\prime }+2 y = 4 \delta \left (-1+t \right ) \]





13897

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]





13898

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]





13899

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]





13900

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]