4.148 Problems 14701 to 14800

Table 4.295: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

14701

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

14702

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

14703

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

14704

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

14705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

14706

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

14707

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (2+t \right ) y^{\prime } = -2-t \]

14708

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]

14709

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{\frac {7}{2}}} \]

14710

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

14711

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14712

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

14713

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14714

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

14715

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

14716

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

14717

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

14718

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

14719

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

14720

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

14721

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

14722

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

14723

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

14724

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

14725

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

14726

\[ {}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

14727

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

14728

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

14729

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

14730

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

14731

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

14732

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

14733

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

14734

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

14735

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

14736

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

14737

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

14738

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

14739

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

14740

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14741

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14743

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

14744

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

14745

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

14746

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

14747

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

14748

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

14749

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

14750

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]

14751

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

14752

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

14753

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14754

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14755

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

14756

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

14757

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

14758

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

14759

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14760

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

14761

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14762

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

14763

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14764

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

14765

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14766

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14767

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

14768

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14769

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

14770

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

14771

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

14772

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

14773

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

14774

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

14775

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

14776

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

14777

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

14778

\[ {}\left (-2+x \right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

14779

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (2+x \right ) y^{\prime }-y = 0 \]

14780

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

14781

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

14782

\[ {}y^{\prime \prime }+y = 0 \]

14783

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

14784

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

14785

\[ {}\left (2+3 x \right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

14786

\[ {}\left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

14787

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }+4 y = 0 \]

14788

\[ {}y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

14789

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

14790

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

14791

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]

14792

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

14793

\[ {}y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

14794

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

14795

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

14796

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

14797

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

14798

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

14799

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14800

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]