4.154 Problems 15301 to 15400

Table 4.307: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

15301

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

15302

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

15303

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

15304

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \left (\cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

15305

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \cos \left (x \right ) {\mathrm e}^{-2 x} \]

15306

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

15307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

15308

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

15309

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

15310

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

15311

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

15312

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

15313

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

15314

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

15315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

15316

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

15317

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

15318

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

15319

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

15320

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

15321

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

15322

\[ {}y^{\prime \prime }-y = \sin \left (x \right )+x \]

15323

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

15324

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

15325

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

15326

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

15327

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

15328

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

15329

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

15330

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

15331

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

15332

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

15333

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

15334

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

15335

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

15336

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

15337

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

15338

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

15339

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

15340

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

15341

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

15342

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

15343

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

15344

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

15345

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

15346

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

15347

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

15349

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

15350

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

15351

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

15352

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

15353

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

15354

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

15355

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

15356

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \]

15357

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

15358

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

15359

\[ {}y^{\prime \prime }+y = 2-2 x \]

15360

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

15361

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

15362

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

15363

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]

15364

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

15365

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

15366

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

15367

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]

15368

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

15369

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{x} x^{2} \]

15370

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

15371

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

15372

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

15373

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]

15374

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15375

\[ {}y^{\prime \prime \prime }-y = 2 x \]

15376

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

15377

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

15378

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

15379

\[ {}y^{\prime \prime }-y = 1 \]

15380

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

15381

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

15382

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

15383

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]

15384

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

15385

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

15386

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

15387

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15388

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15389

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

15390

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15391

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y = 0 \]

15392

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

15393

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

15394

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

15395

\[ {}\left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

15396

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

15397

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

15398

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

15399

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

15400

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]