# |
ODE |
Mathematica |
Maple |
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0 |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = y^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{2} = 2 x y \] |
✓ |
✓ |
|
\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y}{-1+x}+\frac {x y^{\prime }}{y+1} = 0 \] |
✓ |
✓ |
|
\[ {}x +2 x^{3}+\left (y+2 y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (y-1\right ) \left (1+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \] |
✓ |
✓ |
|
\[ {}z^{\prime } = 10^{x +z} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+t = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x -y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 x -3 \] |
✓ |
✓ |
|
\[ {}\left (2 y+x \right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x -y-1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-2 x y+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}-y+x y^{\prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+x y+y^{2} = x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+\sqrt {-x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y+x}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x +y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x +\frac {y}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \] |
✓ |
✓ |
|
\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (1+x +y\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \] |
✓ |
✓ |
|
\[ {}y+2 = \left (-4+2 x +y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime } = y^{3}+x y \] |
✓ |
✓ |
|
\[ {}y+x \left (1+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+x = 4 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+y = y^{2} \sqrt {x -y^{2} x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \] |
✓ |
✓ |
|
|
|||
|
|||