4.59 Problems 5801 to 5900

Table 4.117: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

5801

2y+(x2y+1)xy=0

5802

y(xy+1)+(1xy)xy=0

5803

y(y2x2+1)+(y2x21)xy=0

5804

(x2y4)yxy=0

5805

y(1+x2y41)+2xy=0

5806

x(29xy2)+y(4y26x3)y=0

5807

yx+(y3+ln(x))y=0

5808

2x+3+(2y2)y=0

5809

2x+4y+(2x2y)y=0

5810

y+2yy=0

5811

y+yxyx2=0

5812

(x2+1)y+xy+y=0

5813

ycot(x)y+cos(x)y=0

5814

y+yx+x2y=0

5815

x2(x2+1)y+2x(x2+1)y2y=0

5816

(x2+1)yxy+y=0

5817

y2xy+4x2y+8x3y=0

5818

y+x(1x)y+exy=0

5819

x2y+2xy+4y=0

5820

x4yx2y+y=0

5821

(x2+1)y+xy+y=0

5822

y+xy+y=2xex1

5823

xy+xyy=x2+2x

5824

x2y+xyy=x2+2x

5825

x3y+xyy=cos(1x)

5826

x(1+x)y+(2+x)yy=x+1x

5827

2xy+(2+x)yy=x21

5828

x2(1+x)y+x(4x+3)yy=x+1x

5829

x2(1+ln(x))yxy+y=x(1ln(x))2

5830

xy+2y+xy=sec(x)

5831

(x2+1)yxy+y4=x22+12

5832

(cos(x)+sin(x))y2cos(x)y+(cos(x)sin(x))y=(cos(x)+sin(x))2e2x

5833

(cos(x)sin(x))y2ysin(x)+(cos(x)+sin(x))y=(cos(x)sin(x))2

5834

y=x2(1+y2)

5835

y=x21y2

5836

y=3x2+4x+22y2

5837

xy2xy=y

5838

y=x+y1xy+3

5839

ex+y+(x2sin(y))y=0

5840

3x+6y+(x2y+3yx)y=0

5841

y2xy+x2y=0

5842

x+y(xy)y=0

5843

y=y2x+x22y

5844

y=2t+yt+y2t

5845

y=yt1y2

5846

yy+x=ay2

5847

y2a2y2=0

5848

y2=4x2

5849

y2y3y=0

5850

s+2s+s=0

5851

y2y+5y=0

5852

y2y3y=3x+1

5853

y3y+2y=e2xx

5854

y+y=4sin(x)

5855

y+2x2y+(x4+2x1)y=0

5856

px2u+qxu+ru=f(x)

5857

sin(x)u+2cos(x)u+sin(x)u=0

5858

3y2yyyy2=0

5859

yxyx2+1+yx2+1=0

5860

x2yy=x2y2y2

5861

y3y+3yy=4et

5862

y+2y+y=3sin(t)5cos(t)

5863

yyy+y=g(t)

5864

y(5)yt=0

5865

xxx2=0

5866

y+4y+3y4y4y=f(x)

5867

u(2x+1)u+(x2+x1)u=0

5868

y+6y+9y=50e2x

5869

y4y+4y=50e2x

5870

y+3y+2y=cos(2x)

5871

y+6y+11y+6y=2sin(3x)

5872

y+4y=x2

5873

y4y+3y=x3

5874

y+2y+(1+2(3x+1)2)y=0

5875

y+x2+y2xy=0

5876

y2=a2y2

5877

x2y2xy+(x2+2)y=0

5878

y+2yx2y(1+x)2=0

5879

y(y2x2+1)+(y2x21)xy=0

5880

2x3y2y+(2x2y3x)y=0

5881

1y+sec(yx)xyy2=0

5882

ϕϕ22ϕcot(θ)=0

5883

ucot(θ)u=0

5884

(ϕϕ22)sin(θ)2ϕsin(θ)cos(θ)=cos(2θ)2+1

5885

ayy=1+y2

5886

a2y=y

5887

yexy+xexyy=0

5888

x2xy+ey+(yx2+xey)y=0

5889

yyx+(x+x8)y4x2=0

5890

(x2+1)z+(13x)z+kz=0

5891

(x2+1)η(1+x)η+(k+1)η=0

5892

x2+y22xyy=0

5893

x2y2+2xyy=0

5894

y+xy=x2+y2

5895

y+xy=xx2y2y

5896

x+yy+yxy=0

5897

yyy2y2y=0

5898

[x1(t)=3x1(t)18x2(t),x2(t)=2x1(t)9x2(t)]

5899

[x1(t)=x1(t)+3x2(t),x2(t)=5x1(t)+3x2(t)]

5900

[x1(t)=x1(t)+3x2(t),x2(t)=3x1(t)+5x2(t)]