3.2.34 Problems 3301 to 3400

Table 3.205: Second order linear ODE

#

ODE

Mathematica

Maple

11755

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

11756

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

11757

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

11758

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

11759

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

11760

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

11761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

11762

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

11763

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

11764

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

11765

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

11766

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11767

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

11768

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

11775

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

11776

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

11777

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

11778

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

11779

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

11780

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

11781

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

11782

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 \,{\mathrm e}^{-2 x} x \]

11787

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

11788

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

11795

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

11796

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

11799

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

11800

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]

11801

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 \,{\mathrm e}^{2 x} x \]

11802

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]

11803

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]

11804

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]

11805

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]

11806

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]

11807

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]

11808

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]

11809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} x +6 \,{\mathrm e}^{x} \]

11810

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{x} x^{2} \]

11811

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

11812

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

11815

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

11816

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

11817

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

11818

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

11819

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

11829

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

11830

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

11831

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

11832

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

11833

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

11834

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

11835

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

11836

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

11837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

11838

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

11839

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

11840

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

11841

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

11842

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

11843

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

11844

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

11845

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

11846

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

11847

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

11848

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

11849

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (2+x \right )^{2} \]

11850

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = x^{3} \]

11851

\[ {}x \left (-2+x \right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (-1+x \right ) y = 3 x^{2} \left (-2+x \right )^{2} {\mathrm e}^{x} \]

11852

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

11853

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

11855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

11856

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11857

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

11858

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

11859

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

11860

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

11861

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

11862

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

11863

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

11864

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

11868

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

11869

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11870

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

11871

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

11872

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

11874

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

11875

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

11876

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

11877

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

11878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

11879

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

11880

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11881

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

11882

\[ {}\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y = 0 \]

11883

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

12014

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

12015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12016

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

12017

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

12018

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]