3.4.29 Problems 2801 to 2900

Table 3.393: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

13525

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

13527

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

13528

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

13529

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

13532

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

13536

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13537

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13538

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

13539

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13540

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13541

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

13542

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

13543

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

13544

\[ {}y^{\prime \prime }+y = 0 \]

13545

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

13546

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

13547

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13549

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13560

\[ {}y^{\prime \prime }+4 y = 0 \]

13561

\[ {}y^{\prime \prime }-4 y = 0 \]

13562

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13563

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13564

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13565

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13566

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13567

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13568

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

13569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13570

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13573

\[ {}y^{\prime \prime }-4 y = 0 \]

13574

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

13575

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

13576

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

13579

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

13580

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

13581

\[ {}y^{\prime \prime }-25 y = 0 \]

13582

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

13583

\[ {}4 y^{\prime \prime }-y = 0 \]

13584

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

13585

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13586

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13587

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13588

\[ {}y^{\prime \prime }-9 y = 0 \]

13589

\[ {}y^{\prime \prime }-9 y = 0 \]

13590

\[ {}y^{\prime \prime }-9 y = 0 \]

13591

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13592

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13593

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

13594

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

13595

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

13596

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

13597

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13598

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13600

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13601

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13602

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13603

\[ {}y^{\prime \prime }+25 y = 0 \]

13604

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13605

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13606

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13607

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

13608

\[ {}4 y^{\prime \prime }+y = 0 \]

13609

\[ {}y^{\prime \prime }+16 y = 0 \]

13610

\[ {}y^{\prime \prime }+16 y = 0 \]

13611

\[ {}y^{\prime \prime }+16 y = 0 \]

13612

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13613

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13614

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13615

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13616

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13643

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

13644

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

13645

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

13646

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13647

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

13648

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

13649

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13650

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

13651

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

13652

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

13653

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

13654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13655

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13656

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

13657

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

13658

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

13659

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

13660

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

13661

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13662

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13663

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

13664

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13665

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

13666

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13799

\[ {}y^{\prime \prime }+36 y = 0 \]

13800

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

13801

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

13802

\[ {}y^{\prime \prime }-36 y = 0 \]