3.5.1 Problems 1 to 100

Table 3.401: Second ODE non-homogeneous ODE




#

ODE

Mathematica

Maple





188

\[ {}y^{\prime \prime }+y = 3 x \]





189

\[ {}y^{\prime \prime }-4 y = 12 \]





190

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]





191

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]





192

\[ {}y^{\prime \prime }+2 y = 4 \]





193

\[ {}y^{\prime \prime }+2 y = 6 x \]





194

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]





219

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]





220

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4 \]





221

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]





222

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]





223

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]





224

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]





225

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]





226

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]





227

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]





228

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]





229

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]





230

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]





231

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]





232

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]





233

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \]





234

\[ {}y^{\prime \prime }+4 y = 2 x \]





235

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]





236

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]





237

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]





238

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 1+x \]





239

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (3 x \right ) \sin \left (x \right ) \]





240

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]





241

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]





242

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]





243

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]





244

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]





245

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]





246

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]





247

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]





248

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]





249

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]





250

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]





251

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]





252

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]





253

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]





254

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]





255

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{\frac {4}{3}} \]





256

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]





257

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]





258

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]





259

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]





260

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]





261

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]





262

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]





263

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]





264

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]





265

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]





266

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]





267

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]





268

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]





269

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]





270

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]





271

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]





683

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]





684

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]





685

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]





686

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]





687

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]





688

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]





689

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]





690

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]





691

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]





692

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]





693

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]





694

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]





695

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]





696

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 2 t^{3} \]





697

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]





698

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \]





699

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]





700

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]





701

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]





702

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]





703

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]





704

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right ) {\mathrm e}^{-t} \]





707

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]





708

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]





709

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]





710

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]





840

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]





841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]





842

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]





843

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]





844

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]





845

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]





846

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]





847

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]





848

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]





849

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]





850

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]





851

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]





853

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \]





854

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \]