3.5.2 Problems 101 to 200

Table 3.403: Second ODE non-homogeneous ODE

#

ODE

Mathematica

Maple

855

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )-\operatorname {Heaviside}\left (t -5-k \right ) \left (t -5-k \right )}{k} \]

856

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

857

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

858

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\operatorname {Heaviside}\left (t -10\right ) \]

859

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

860

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

861

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

862

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

864

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (-1+t \right ) \]

865

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (-1+t \right ) \]

866

\[ {}y^{\prime \prime }+y = \frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \]

867

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right ) \]

868

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

1107

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

1108

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {4}{x^{2}} \]

1109

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

1110

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

1111

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 7 x^{\frac {3}{2}} {\mathrm e}^{x} \]

1112

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right ) \]

1113

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sec \left (x \right ) \]

1114

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (2+x \right )} \]

1115

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -6 x -4 \]

1116

\[ {}x^{2} y^{\prime \prime }+2 x \left (-1+x \right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

1117

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = {\mathrm e}^{x} x^{2} \]

1118

\[ {}\left (-2 x +1\right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

1119

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1120

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

1121

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x} \]

1122

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{\frac {5}{2}} {\mathrm e}^{2 x} \]

1123

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 4 x^{2} \]

1137

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1139

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = \left (1+x \right )^{3} {\mathrm e}^{x} \]

1140

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2} \]

1141

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2+x \]

1155

\[ {}y^{\prime \prime }+9 y = \tan \left (3 x \right ) \]

1156

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]

1157

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

1158

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]

1159

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{\frac {3}{2}} {\mathrm e}^{x} \]

1160

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]

1161

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2 \]

1162

\[ {}x^{2} y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x} \]

1163

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

1164

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (2+x \right )} \]

1165

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{\frac {5}{2}} \]

1166

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{4} \sin \left (x \right ) \]

1167

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

1168

\[ {}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right ) \]

1169

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

1170

\[ {}x^{2} y^{\prime \prime }-\left (-1+2 a \right ) x y^{\prime }+a^{2} y = x^{1+a} \]

1171

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

1172

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

1173

\[ {}\sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x} \]

1174

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 8 x^{\frac {5}{2}} \]

1175

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = x^{\frac {7}{2}} \]

1176

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 3 x^{4} \]

1177

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

1178

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = x^{\frac {3}{2}} \]

1179

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

1180

\[ {}x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x} \]

1181

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = x^{4} \]

1182

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 2 \left (-1+x \right )^{2} {\mathrm e}^{x} \]

1183

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = x^{\frac {5}{2}} {\mathrm e}^{x} \]

1184

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]

1185

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+2 y = \left (-1+x \right )^{2} \]

1186

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (-1+x \right )^{3} y = \left (-1+x \right )^{3} {\mathrm e}^{x} \]

1187

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

1188

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2} \]

1189

\[ {}\left (1+x \right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]

1754

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

1755

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

1756

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

1757

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

1758

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]

1759

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{\frac {5}{2}} {\mathrm e}^{-2 t} \]

1760

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \]

1761

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]

1762

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

1763

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

1764

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

2140

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

2141

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

2142

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

2143

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

2144

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

2145

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

2146

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

2148

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

2149

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

2150

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

2151

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

2152

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

2154

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

2157

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

2160

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

2161

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

2162

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

2164

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

2166

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

2167

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]