3.5.9 Problems 801 to 900

Table 3.417: Second ODE non-homogeneous ODE

#

ODE

Mathematica

Maple

6702

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]

6703

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (-1+t \right ) \]

6704

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

6705

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]

6706

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (-1+t \right ) \]

6707

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]

6708

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

6710

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

6828

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

6829

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

6841

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

6846

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6855

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

6856

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

6859

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

6860

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

6861

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

6862

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

6863

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

6864

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

7037

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

7038

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

7039

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

7040

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

7086

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

7087

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

7091

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

7099

\[ {}y^{\prime \prime } = 1 \]

7100

\[ {}y^{\prime \prime } = f \left (t \right ) \]

7101

\[ {}y^{\prime \prime } = k \]

7104

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

7106

\[ {}y y^{\prime \prime } = 1 \]

7107

\[ {}y y^{\prime \prime } = x \]

7108

\[ {}y^{2} y^{\prime \prime } = x \]

7110

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

7111

\[ {}3 y y^{\prime \prime }+y = 5 \]

7112

\[ {}a y y^{\prime \prime }+b y = c \]

7113

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

7127

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

7135

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

7137

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7138

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

7139

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

7140

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

7141

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

7142

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

7143

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

7144

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7145

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

7146

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

7147

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

7148

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

7149

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

7150

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

7151

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

7152

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7153

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

7154

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

7155

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

7156

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

7157

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7158

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

7159

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

7160

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

7161

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

7162

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

7163

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

7164

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

7165

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

7166

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

7167

\[ {}y^{\prime \prime }-x y-x = 0 \]

7168

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

7169

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

7170

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

7171

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

7172

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

7173

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

7174

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

7175

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

7176

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

7177

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

7178

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

7179

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

7180

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7181

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

7182

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

7183

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

7184

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

7185

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

7186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

7187

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7188

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

7189

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

7193

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7194

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7195

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7196

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7197

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7198

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7199

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]