3.5.17 Problems 1601 to 1700

Table 3.433: Second ODE non-homogeneous ODE




#

ODE

Mathematica

Maple





13832

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]





13833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]





13834

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]





13835

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]





13836

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]





13837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]





13838

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]





13839

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]





13841

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]





13842

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]





13843

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]





13844

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 \sin \left (3 x \right ) x \]





13847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]





13848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]





13852

\[ {}y^{\prime \prime }-4 y = t^{3} \]





13853

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]





13854

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13855

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]





13856

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]





13857

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]





13858

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]





13859

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13860

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13864

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]





13865

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]





13867

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]





13870

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]





13871

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]





13872

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]





13873

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]





13874

\[ {}y^{\prime \prime }+4 y = 1 \]





13875

\[ {}y^{\prime \prime }+4 y = t \]





13876

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]





13877

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13878

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]





13879

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]





13880

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]





13881

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]





13882

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]





13883

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]





13886

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]





13887

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]





13888

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]





13890

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13891

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13894

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]





13895

\[ {}y^{\prime \prime } = \delta \left (-1+t \right )-\delta \left (t -4\right ) \]





13897

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]





13898

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]





13900

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]





13901

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (-1+t \right ) \]





13902

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]





13903

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]





13904

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]





13905

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]





13906

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]





13907

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]





13908

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]





14045

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]





14050

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]





14051

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]





14060

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]





14112

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]





14113

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]





14121

\[ {}y^{\prime \prime }+4 y = t \]





14266

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]





14453

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]





14519

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]





14520

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]





14521

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]





14522

\[ {}y^{\prime \prime }-y = 2 t -4 \]





14523

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]





14524

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]





14525

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]





14526

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]





14527

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]





14528

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]





14529

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]





14530

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]





14531

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]





14532

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]





14533

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]





14534

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]





14535

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]





14536

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]





14537

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]





14538

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]





14539

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]





14540

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]





14541

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]





14542

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]





14543

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]





14544

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]





14545

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]





14546

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]





14547

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]





14548

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]





14549

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]





14550

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]





14551

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]