# |
ODE |
Mathematica |
Maple |
\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x +\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (x y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sin \left (y\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sin \left (x y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \cos \left (x y\right ) \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}3 x \left (2+3 x \right ) y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+7 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-x y^{\prime }+\left (1-x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (2+3 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (-1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} \left (1-x \right ) y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }-5 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (-1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (8-x \right ) x^{2} y^{\prime \prime }+6 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0 \] |
✓ |
✗ |
|
\[ {}2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (-1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-2 x y = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-x y^{\prime }+y = x^{3} \] |
✓ |
✓ |
|
\[ {}\left (-2 x +1\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = x^{2}-x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +12\right ) y = x^{2}+x \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \] |
✓ |
✓ |
|
\[ {}3 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = x^{4}+x^{2} \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+10 x y^{\prime }+y = -1+x \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 6 \left (-x^{2}+1\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+2 y = x^{2} \left (2+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = x \left (x^{2}+x +1\right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-x y^{\prime }+\left (1-x \right ) y = x^{2} \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \] |
✓ |
✓ |
|
\[ {}z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \] |
✓ |
✓ |
|
\[ {}\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \] |
✓ |
✗ |
|
\[ {}z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|