3.7.6 Problems 501 to 600

Table 3.463: Solved using series method

#

ODE

Mathematica

Maple

2905

(x23)y3xy5y=0

2906

(x2+1)y+4xy+2y=0

2907

(4x2+1)y20xy16y=0

2908

(x21)y6xy+12y=0

2909

y+2y+4xy=0

2910

y+xy+(2+x)y=0

2911

yexy=0

2912

xy(1+x)yxy=0

2913

(2x2+1)y+7xy+2y=0

2914

4y+xy+4y=0

2915

y+2x2y+xy=2cos(x)

2916

y+xy4y=6ex

2917

y+y1x+xy=0

2918

x2y+xy(x2+1)2+y=0

2919

(2+x)2y+(2+x)exy+4yx=0

2920

y+2yx(x3)yx3(x+3)=0

2921

x2y+x(1x)y7y=0

2922

4x2y+xexyy=0

2923

4xyxy+2y=0

2924

x2yxcos(x)y+5e2xy=0

2925

4x2y+3xy+xy=0

2926

6x2y+x(1+18x)y+(1+12x)y=0

2927

x2y+xy(2+x)y=0

2928

2xy+y2xy=0

2929

3x2yx(8+x)y+6y=0

2930

2x2yx(2x+1)y+2(4x1)y=0

2931

x2y+x(1x)y(5+x)y=0

2932

3x2y+x(7+3x)y+(1+6x)y=0

2933

x2y+xy+(1x)y=0

2934

3x2y+x(3x2+1)y2xy=0

2935

4x2y4x2y+(2x+1)y=0

2936

x2y+x(32x)y+(2x+1)y=0

2937

x2yx(x+3)y+(4x)y=0

2938

x2y+x(3x)y+y=0

2939

x2y+xy(x+4)y=0

2940

x2y(x2+x)y+(x3+1)y=0

2941

x2y(251)xy+(1943x2)y=0

2942

x2y+(2x5+9x)y+(10x4+5x2+25)y=0

2943

x2y+(4x+12x213x3)y7y4=0

2944

x2y+x2y+xy=0

2945

x2y+x(x3)y+(4x)y=0

2946

4x2y+2x2y+y=0

2947

x2y+xcos(x)y2exy=0

2948

x2y+x2y(2+x)y=0

2949

x2y+2x2y+(x34)y=0

2950

x2y+xy+(2x1)y=0

2951

x2y+x3y(2+x)y=0

2952

x2(x2+1)y+7xexy+9(1+tan(x))y=0

2953

x2(1+x)y+x2y2y=0

2954

x2y+3xy+(1x)y=0

2955

xyy=0

2956

x2y+x(x2+6)y+6y=0

2957

x2y+x(1x)yy=0

2958

4x2y+(14x)y=0

2959

xy+y2y=0

2960

x2y+xy(1+x)y=0

2961

x2yx(x+3)y+4y=0

2962

x2yx2y2y=0

2963

x2yx2y(2+3x)y=0

2964

x2y+x(5x)y+4y=0

2965

4x2y+4x(1x)y+(2x9)y=0

2966

x2y+2x(2+x)y+2(1+x)y=0

2967

x2yx(1x)y+(1x)y=0

2968

4x2y+4x(2x+1)y+(4x1)y=0

2969

4x2y(3+4x)y=0

2970

xyxy+y=0

2971

x2y+x(x+4)y+(2+x)y=0

2972

x2y+xy+(x294)y=0

2973

xyy+xy=0

2974

y+xy=0

2975

yx2y=0

2976

(x2+1)y6xy4y=0

2977

xy+y+2y=0

2978

xy+2y+xy=0

2979

2xy+5(2x+1)y5y=0

2980

xy+y+xy=0

2981

(4x2+1)y8y=0

2982

x2y+xy+(x214)y=0

2983

4xy+3y+3y=0

2984

x2y+3xy2(1+x)y2=0

2985

x2yx(2x)y+(x2+2)y=0

2986

x2y3xy+4(1+x)y=0

2987

y+(134x2)y=0

4696

xy+(x+n)y+(n+1)y=0

4697

y+xy=0

4698

2x2yxy+(x2+1)y=x2

4699

xy+2y+a3x2y=2

4700

y+ax2y=1+x

4701

x4y+xy+y=0

4702

x2y+(2x2+x)y4y=0

4703

(x2+x)y+3y+2y=0

4704

(4x314x22x)y(6x27x+1)y+(6x1)y=0

4705

x2y+x2y+(2+x)y=0

4706

x2yx2y+(2+x)y=0

4707

x2(14x)y+((1n)x(64n)x2)y+n(1n)xy=0

4708

x2y+(x2+x)y+(x9)y=0

4709

(a2+x2)y+xyn2y=0

4710

(x2+1)yxy+a2y=0

4711

xy+y+y=0

4712

xy+y+pxy=0