3.7.6 Problems 501 to 600

Table 3.463: Solved using series method

#

ODE

Mathematica

Maple

2905

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

2906

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

2907

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

2908

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

2909

\[ {}y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

2910

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2+x \right ) y = 0 \]

2911

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

2912

\[ {}x y^{\prime \prime }-\left (-1+x \right ) y^{\prime }-x y = 0 \]

2913

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

2914

\[ {}4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

2915

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 2 \cos \left (x \right ) \]

2916

\[ {}y^{\prime \prime }+x y^{\prime }-4 y = 6 \,{\mathrm e}^{x} \]

2917

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1-x}+x y = 0 \]

2918

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y = 0 \]

2919

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }+\left (-2+x \right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x} = 0 \]

2920

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

2921

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y = 0 \]

2922

\[ {}4 x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }-y = 0 \]

2923

\[ {}4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

2924

\[ {}x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 \,{\mathrm e}^{2 x} y = 0 \]

2925

\[ {}4 x^{2} y^{\prime \prime }+3 x y^{\prime }+x y = 0 \]

2926

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

2927

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2+x \right ) y = 0 \]

2928

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 x y = 0 \]

2929

\[ {}3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y = 0 \]

2930

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

2931

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (5+x \right ) y = 0 \]

2932

\[ {}3 x^{2} y^{\prime \prime }+x \left (7+3 x \right ) y^{\prime }+\left (1+6 x \right ) y = 0 \]

2933

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1-x \right ) y = 0 \]

2934

\[ {}3 x^{2} y^{\prime \prime }+x \left (3 x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

2935

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

2936

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (-2 x +1\right ) y = 0 \]

2937

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

2938

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

2939

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +4\right ) y = 0 \]

2940

\[ {}x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y = 0 \]

2941

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

2942

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{5}+9 x \right ) y^{\prime }+\left (10 x^{4}+5 x^{2}+25\right ) y = 0 \]

2943

\[ {}x^{2} y^{\prime \prime }+\left (4 x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}\right ) y^{\prime }-\frac {7 y}{4} = 0 \]

2944

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

2945

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

2946

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+y = 0 \]

2947

\[ {}x^{2} y^{\prime \prime }+x \cos \left (x \right ) y^{\prime }-2 \,{\mathrm e}^{x} y = 0 \]

2948

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y = 0 \]

2949

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

2950

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x -1\right ) y = 0 \]

2951

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }-\left (2+x \right ) y = 0 \]

2952

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+7 x \,{\mathrm e}^{x} y^{\prime }+9 \left (1+\tan \left (x \right )\right ) y = 0 \]

2953

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

2954

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1-x \right ) y = 0 \]

2955

\[ {}x y^{\prime \prime }-y = 0 \]

2956

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

2957

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

2958

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

2959

\[ {}x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

2960

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

2961

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

2962

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

2963

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

2964

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

2965

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

2966

\[ {}x^{2} y^{\prime \prime }+2 x \left (2+x \right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

2967

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

2968

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

2969

\[ {}4 x^{2} y^{\prime \prime }-\left (3+4 x \right ) y = 0 \]

2970

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

2971

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

2972

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

2973

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

2974

\[ {}y^{\prime \prime }+x y = 0 \]

2975

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

2976

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-6 x y^{\prime }-4 y = 0 \]

2977

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

2978

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

2979

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

2980

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

2981

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

2982

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

2983

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

2984

\[ {}x^{2} y^{\prime \prime }+\frac {3 x y^{\prime }}{2}-\frac {\left (1+x \right ) y}{2} = 0 \]

2985

\[ {}x^{2} y^{\prime \prime }-x \left (2-x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

2986

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \]

2987

\[ {}y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y = 0 \]

4696

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

4697

\[ {}y^{\prime \prime }+x y = 0 \]

4698

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

4699

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

4700

\[ {}y^{\prime \prime }+a \,x^{2} y = 1+x \]

4701

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

4702

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

4703

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

4704

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

4705

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

4706

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

4707

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y = 0 \]

4708

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

4709

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

4710

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

4711

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4712

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]