3.7.7 Problems 601 to 700

Table 3.465: Solved using series method

#

ODE

Mathematica

Maple

4713

\[ {}x y^{\prime \prime }+y = 0 \]

4714

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

4715

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

4716

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

4717

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

4718

\[ {}y^{\prime \prime }+\frac {a y}{x^{\frac {3}{2}}} = 0 \]

4719

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

4720

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

4721

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

4722

\[ {}x^{3} y^{\prime \prime }+y = x^{\frac {3}{2}} \]

4723

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

4724

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

4725

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

4726

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

4727

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

4728

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

4729

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

4730

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

4892

\[ {}x y^{\prime } = x y+y \]

4894

\[ {}y^{\prime } = 3 x^{2} y \]

4896

\[ {}x y^{\prime } = y \]

4898

\[ {}y^{\prime \prime } = -4 y \]

4900

\[ {}y^{\prime \prime } = y \]

4902

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

4904

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

4906

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

4908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4910

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

5002

\[ {}\left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

5003

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

5004

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

5005

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

5006

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

5007

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

5008

\[ {}\sin \left (x \right ) y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

5009

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

5010

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

5011

\[ {}y^{\prime }+\left (2+x \right ) y = 0 \]

5012

\[ {}y^{\prime }-y = 0 \]

5013

\[ {}z^{\prime }-x^{2} z = 0 \]

5014

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

5015

\[ {}y^{\prime \prime }+\left (-1+x \right ) y^{\prime }+y = 0 \]

5016

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5017

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

5018

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5019

\[ {}\left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

5020

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

5021

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

5022

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

5023

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

5024

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

5025

\[ {}y^{\prime }+2 \left (-1+x \right ) y = 0 \]

5026

\[ {}y^{\prime }-2 x y = 0 \]

5027

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

5028

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

5029

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

5030

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

5031

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]

5032

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

5033

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

5034

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

5035

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+\cos \left (x \right ) y = 0 \]

5036

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

5037

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

5038

\[ {}z^{\prime \prime }+z^{\prime } x +z = x^{2}+2 x +1 \]

5039

\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

5040

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \left (x \right ) \]

5041

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \left (x \right ) \]

5042

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

5043

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

5044

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

5216

\[ {}\left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

5217

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

5218

\[ {}y^{\prime \prime }+x y = 0 \]

5219

\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

5220

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

5221

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

5222

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

5223

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

5224

\[ {}y^{\prime \prime }-x y = 0 \]

5225

\[ {}y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]

5449

\[ {}\left (1-x \right ) y^{\prime } = x^{2}-y \]

5450

\[ {}x y^{\prime } = 1-x +2 y \]

5452

\[ {}y^{\prime } = 2 x^{2}+3 y \]

5453

\[ {}\left (1+x \right ) y^{\prime } = x^{2}-2 x +y \]

5454

\[ {}y^{\prime \prime }+x y = 0 \]

5455

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

5456

\[ {}y^{\prime \prime }-x y^{\prime }+x^{2} y = 0 \]

5457

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

5458

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

5459

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

5460

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

5461

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

5462

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

5463

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

5464

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5465

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

5466

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

5467

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = 1+x \]

5468

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]