3.7.9 Problems 801 to 900

Table 3.469: Solved using series method

#

ODE

Mathematica

Maple

5570

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

5571

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

5572

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

5573

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

5574

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

5575

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

5576

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

5577

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

5578

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

5579

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

5580

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

5581

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

5582

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

5583

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

5584

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

5585

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

5586

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

5587

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

5588

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

5589

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

5590

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

5591

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

5592

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

5593

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

5594

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

5595

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

5596

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

5597

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

5598

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

5599

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

5600

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

5601

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

5602

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

5603

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

5604

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

5605

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

5606

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

5607

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

5608

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

5609

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

5610

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

5611

\[ {}y^{\prime \prime }+y = 0 \]

5612

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

5613

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

5614

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{4}+3\right ) y = 0 \]

5615

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

5616

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

5617

\[ {}\left (-1+x \right ) y^{\prime \prime }+3 y = 0 \]

5618

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

5619

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]

5620

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

5621

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

5622

\[ {}\left (2+x \right ) y^{\prime \prime }+3 y = 0 \]

5623

\[ {}\left (1+x \right ) y^{\prime } = y \]

5624

\[ {}y^{\prime } = -2 x y \]

5625

\[ {}x y^{\prime }-3 y = k \]

5626

\[ {}y^{\prime \prime }+y = 0 \]

5627

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

5628

\[ {}y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

5629

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

5630

\[ {}y^{\prime \prime }+\left (x^{2}+1\right ) y = 0 \]

5631

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

5632

\[ {}y^{\prime }+4 y = 1 \]

5633

\[ {}y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

5634

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]

5635

\[ {}\left (-2+x \right ) y^{\prime } = x y \]

5636

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y = 0 \]

5637

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

5638

\[ {}x y^{\prime \prime }+y = 0 \]

5639

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

5640

\[ {}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

5641

\[ {}y^{\prime \prime }+\left (-1+x \right ) y = 0 \]

5642

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

5643

\[ {}2 x \left (-1+x \right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

5644

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

5645

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

5646

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

5647

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

5648

\[ {}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

5649

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

5650

\[ {}4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

5651

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5652

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

5653

\[ {}3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

5654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

5655

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

5656

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

5657

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

5658

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

5659

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (1+x \right ) y = 0 \]

5660

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-6\right ) y = 0 \]

5661

\[ {}x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

5662

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (36 x^{4}-16\right ) y = 0 \]

5663

\[ {}y^{\prime \prime }+x y = 0 \]

5664

\[ {}4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

5665

\[ {}x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

5666

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

5667

\[ {}y^{\prime \prime }+k^{2} x^{4} y = 0 \]

5668

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

5669

\[ {}y^{\prime \prime }+4 y = 0 \]