3.7.10 Problems 901 to 1000

Table 3.471: Solved using series method

#

ODE

Mathematica

Maple

5670

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

5671

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (-1+x \right ) y^{\prime }-35 y = 0 \]

5672

\[ {}16 \left (1+x \right )^{2} y^{\prime \prime }+3 y = 0 \]

5673

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

5674

\[ {}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

5675

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

5676

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

5677

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

5678

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

6019

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

6020

\[ {}y^{\prime \prime }+3 x^{2} y^{\prime }-x y = 0 \]

6021

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

6022

\[ {}y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0 \]

6023

\[ {}y^{\prime \prime }+y = 0 \]

6024

\[ {}y^{\prime \prime }+\left (-1+x \right )^{2} y^{\prime }-\left (-1+x \right ) y = 0 \]

6025

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

6026

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y = 0 \]

6028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

6040

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

6041

\[ {}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 x y = 0 \]

6042

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

6043

\[ {}x y^{\prime \prime }+4 y = 0 \]

6044

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6045

\[ {}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

6046

\[ {}x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

6047

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6048

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6049

\[ {}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \]

6050

\[ {}3 x^{2} y^{\prime \prime }+5 x y^{\prime }+3 x y = 0 \]

6051

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

6052

\[ {}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

6053

\[ {}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

6054

\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 \cos \left (x \right ) y = 0 \]

6055

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

6056

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \]

6057

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

6058

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (-x^{3}+3\right ) y = 0 \]

6059

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

6060

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6061

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (-2+4 x \right ) y = 0 \]

6062

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6404

\[ {}y^{\prime } = 2 x y \]

6406

\[ {}y^{\prime }+y = 1 \]

6408

\[ {}y^{\prime }-y = 2 \]

6410

\[ {}y^{\prime }+y = 0 \]

6412

\[ {}y^{\prime }-y = 0 \]

6414

\[ {}y^{\prime }-y = x^{2} \]

6416

\[ {}x y^{\prime } = y \]

6418

\[ {}x^{2} y^{\prime } = y \]

6420

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

6423

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

6424

\[ {}y^{\prime } = y+1 \]

6425

\[ {}y^{\prime } = x -y \]

6427

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6428

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

6429

\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \]

6430

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

6431

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

6432

\[ {}y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

6433

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6434

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6435

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

6436

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

6437

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

6438

\[ {}y^{\prime \prime }+x y = 0 \]

6439

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

6440

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \]

6441

\[ {}x^{3} \left (-1+x \right ) y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+3 x y = 0 \]

6442

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

6443

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

6444

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

6445

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6446

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6447

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6448

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6449

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6450

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

6451

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

6452

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \]

6453

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

6454

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

6455

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

6456

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

6457

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

6458

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

6459

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

6460

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

6461

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

6462

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

6463

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

6464

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

6465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6466

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-3 \left (-1+x \right ) y^{\prime }+2 y = 0 \]

6467

\[ {}3 \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

6468

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6469

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6470

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

6471

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

6472

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

6473

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]