# |
ODE |
Mathematica |
Maple |
\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \] |
✓ |
✗ |
|
\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-5 y-x \sqrt {y} = 0 \] |
✓ |
✓ |
|
\[ {}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y-2 x^{4} y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2 x^{2}-3 x y\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{4}+4 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{3} y^{6} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 x y-2 y+1+x \left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \arcsin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{t^{2}+4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -1+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t -y \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\tan \left (t \right ) y+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{t +1} \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = -y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}y \left (2 y^{2} x^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+3 x +y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3}+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \] |
✓ |
✓ |
|
\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x +2 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right )+2 \cos \left (x \right ) y = 1 \] |
✓ |
✓ |
|