3.9.8 Problems 701 to 800

Table 3.521: First order ode linear in derivative

#

ODE

Mathematica

Maple

1963

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

1964

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

1965

\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \]

1966

\[ {}x y^{\prime }+\ln \left (x \right )-y = 0 \]

1967

\[ {}x y+\left (x^{2}+y\right ) y^{\prime } = 0 \]

1968

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

1969

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

1970

\[ {}x y^{3}-1+y^{2} y^{\prime } x^{2} = 0 \]

1971

\[ {}\left (y^{3} x^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

1972

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

1973

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

1974

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

1975

\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \]

1976

\[ {}y = x \left (-1+x^{2} y\right ) y^{\prime } \]

1977

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+{\mathrm e}^{x} y \]

1978

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

1979

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

1980

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

1981

\[ {}y \left (1-x^{4} y^{2}\right )+x y^{\prime } = 0 \]

1982

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]

1983

\[ {}y^{2} x^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]

1984

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]

1985

\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \]

1986

\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]

1987

\[ {}2 y+x y^{\prime } = x^{2} \]

1988

\[ {}y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

1989

\[ {}2 x y+y^{\prime } = 2 x \,{\mathrm e}^{-x^{2}} \]

1990

\[ {}y^{\prime } = y+3 \,{\mathrm e}^{x} x^{2} \]

1991

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

1992

\[ {}y x^{\prime }+\left (y +1\right ) x = {\mathrm e}^{y} \]

1993

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

1994

\[ {}x y^{\prime }-2 x^{4}-2 y = 0 \]

1995

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

1996

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

1997

\[ {}x y^{\prime } = 5 y+x +1 \]

1998

\[ {}x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \]

1999

\[ {}2 y+\left (1+x \right ) y^{\prime } = \frac {{\mathrm e}^{x}}{1+x} \]

2000

\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

2001

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

2002

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

2003

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

2004

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

2005

\[ {}y^{2}+1+\left (2 x y-y^{2}\right ) y^{\prime } = 0 \]

2006

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

2007

\[ {}y+y^{3}+4 \left (x y^{2}-1\right ) y^{\prime } = 0 \]

2008

\[ {}2 y-x y-3+x y^{\prime } = 0 \]

2009

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]

2010

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]

2011

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

2012

\[ {}y^{3} y^{\prime }+y^{4} x = x \,{\mathrm e}^{-x^{2}} \]

2013

\[ {}\cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

2014

\[ {}\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

2015

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

2016

\[ {}y^{\prime }-x y = \sqrt {y}\, x \,{\mathrm e}^{x^{2}} \]

2017

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

2018

\[ {}x^{2} y^{\prime }+y^{2} = x y \]

2019

\[ {}\csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

2020

\[ {}y^{\prime }-x y = \frac {x}{y} \]

2021

\[ {}x y^{\prime }+y = y^{2} x^{2} \cos \left (x \right ) \]

2022

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

2023

\[ {}2 y+x y^{\prime } = 3 x^{3} y^{\frac {4}{3}} \]

2024

\[ {}3 y^{\prime }+\frac {2 y}{1+x} = \frac {x}{y^{2}} \]

2025

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

2026

\[ {}\left (x \tan \left (y\right )^{2}-x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

2027

\[ {}y^{\prime }+\cos \left (x \right ) y = y^{3} \sin \left (x \right ) \]

2028

\[ {}y+y^{\prime } = y^{2} {\mathrm e}^{-t} \]

2029

\[ {}y^{\prime } = x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \]

2030

\[ {}2 y = \left (x^{2} y^{4}+x \right ) y^{\prime } \]

2031

\[ {}1+x y \left (x y^{2}+1\right ) y^{\prime } = 0 \]

2032

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = x \left (-x^{2}+1\right ) \sqrt {y} \]

2033

\[ {}\left (1-x \right ) y^{\prime }-y-1 = 0 \]

2034

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

2035

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

2036

\[ {}x \ln \left (x \right ) y^{\prime }+y-x = 0 \]

2037

\[ {}x -2 y+1+\left (-2+y\right ) y^{\prime } = 0 \]

2038

\[ {}2 x y-2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime } = 0 \]

2039

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

2040

\[ {}6+2 y = x y y^{\prime } \]

2041

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

2042

\[ {}y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

2043

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

2044

\[ {}y-x y^{\prime } = 2 y^{\prime }+2 y^{2} \]

2045

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

2046

\[ {}y^{\prime }+y \ln \left (y\right ) \tan \left (x \right ) = 2 y \]

2047

\[ {}2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

2048

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

2049

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

2050

\[ {}\left (3 x +4 y\right ) y^{\prime }+y+2 x = 0 \]

2051

\[ {}2 x^{3}-y^{3}-3 x +3 y^{2} y^{\prime } x = 0 \]

2052

\[ {}x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0 \]

2053

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

2054

\[ {}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

2055

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

2056

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

2057

\[ {}-6+3 x = x y y^{\prime } \]

2058

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

2059

\[ {}2 x y^{\prime }-y+\frac {x^{2}}{y^{2}} = 0 \]

2060

\[ {}x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

2061

\[ {}y \sqrt {x^{2}+y^{2}}+x y = x^{2} y^{\prime } \]

2062

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } \]