3.9.27 Problems 2601 to 2700

Table 3.559: First order ode linear in derivative

#

ODE

Mathematica

Maple

5724

\[ {}y^{\prime }-x y^{2} = 2 x y \]

5725

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

5726

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]

5727

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]

5728

\[ {}\frac {y}{-1+x}+\frac {x y^{\prime }}{y+1} = 0 \]

5729

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

5730

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

5731

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

5732

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

5733

\[ {}y^{\prime } = \left (y-1\right ) \left (1+x \right ) \]

5734

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

5735

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

5736

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

5737

\[ {}z^{\prime } = 10^{x +z} \]

5738

\[ {}x^{\prime }+t = 1 \]

5739

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

5740

\[ {}y^{\prime }-y = 2 x -3 \]

5741

\[ {}\left (2 y+x \right ) y^{\prime } = 1 \]

5742

\[ {}y^{\prime }+y = 2 x +1 \]

5743

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

5744

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

5745

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

5746

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

5747

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

5748

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0 \]

5749

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

5750

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

5751

\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \]

5752

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

5753

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

5754

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

5755

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

5756

\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

5757

\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \]

5758

\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \]

5759

\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \]

5760

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5761

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

5762

\[ {}-y+x y^{\prime } = y y^{\prime } \]

5763

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

5764

\[ {}x^{2}+x y+y^{2} = x^{2} y^{\prime } \]

5765

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

5766

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

5767

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

5768

\[ {}x y^{\prime } = y+\sqrt {-x^{2}+y^{2}} \]

5769

\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \]

5770

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]

5774

\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

5776

\[ {}y^{\prime }+\frac {2 y+x}{x} = 0 \]

5777

\[ {}y^{\prime } = \frac {y}{x +y} \]

5778

\[ {}x y^{\prime } = x +\frac {y}{2} \]

5779

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

5780

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

5781

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

5782

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

5783

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

5784

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \]

5785

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

5786

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

5787

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

5788

\[ {}y+2 = \left (-4+2 x +y\right ) y^{\prime } \]

5789

\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

5790

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

5791

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

5792

\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \]

5793

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

5794

\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \]

5795

\[ {}2 x^{2} y^{\prime } = y^{3}+x y \]

5796

\[ {}y+x \left (2 x y+1\right ) y^{\prime } = 0 \]

5797

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

5798

\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \]

5799

\[ {}2 x y^{\prime }+y = y^{2} \sqrt {x -y^{2} x^{2}} \]

5800

\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \]

5801

\[ {}2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0 \]

5802

\[ {}y \left (x y+1\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

5803

\[ {}\left (1+y^{2} x^{2}\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

5804

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0 \]

5805

\[ {}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 x y^{\prime } = 0 \]

5806

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

5807

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

5808

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

5809

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

5834

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

5835

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

5836

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]

5837

\[ {}x y^{\prime }-2 \sqrt {x y} = y \]

5838

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

5839

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

5840

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

5841

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

5842

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5843

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

5844

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

5845

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

5875

\[ {}y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0 \]

5879

\[ {}\left (1+y^{2} x^{2}\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

5880

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

5881

\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \]

5882

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

5884

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]