# |
ODE |
Mathematica |
Maple |
\[ {}y y^{\prime } = 1+x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } = 2+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime } = -x^{2}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \] |
✓ |
✓ |
|
\[ {}2 y-x^{3} = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-3 y = x^{4} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y = 2 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{4} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } x +y^{3} = x \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = y^{4} x \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (x \right )^{2} y y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}+\cos \left (x \right ) y+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}} = 1 \] |
✓ |
✓ |
|
\[ {}2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime }+y}{1-y^{2} x^{2}}+x = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \] |
✓ |
✓ |
|
\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \] |
✓ |
✓ |
|
\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 x -6 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+2 x y \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \] |
✓ |
✓ |
|
\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \] |
✓ |
✓ |
|
\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \] |
✓ |
✓ |
|