3.9.47 Problems 4601 to 4700

Table 3.599: First order ode linear in derivative




#

ODE

Mathematica

Maple





11677

\[ {}y-1+x \left (1+x \right ) y^{\prime } = 0 \]





11678

\[ {}x^{2}-2 y+x y^{\prime } = 0 \]





11679

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]





11680

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]





11681

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]





11682

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]





11683

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]





11684

\[ {}\left (1+x \right ) y^{\prime }+x y = {\mathrm e}^{-x} \]





11685

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]





11686

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]





11687

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]





11688

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]





11689

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]





11690

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]





11691

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]





11692

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]





11693

\[ {}4 x y y^{\prime } = 1+y^{2} \]





11694

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]





11695

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]





11696

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0





11697

\[ {}\left (2+x \right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2





11698

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]





11699

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]





11700

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]





11701

\[ {}\left (1+x \right ) y^{2}+y+\left (2 x y+1\right ) y^{\prime } = 0 \]





11702

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]





11703

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]





11704

\[ {}8 x^{2} y^{3}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]





11705

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]





11706

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]





11707

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]





11708

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]





11709

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]





11710

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]





11711

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]





11712

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]





11968

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]





11969

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]





11970

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]





11971

\[ {}z^{\prime } = {\mathrm e}^{-2 x} x \]





11972

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]





11973

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]





11974

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]





11975

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]





11976

\[ {}x V^{\prime } = x^{2}+1 \]





11977

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]





11978

\[ {}x^{\prime } = -x+1 \]





11979

\[ {}x^{\prime } = x \left (2-x\right ) \]





11980

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]





11981

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]





11982

\[ {}x^{\prime } = x^{2}-x^{4} \]





11983

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]





11984

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]





11985

\[ {}x^{\prime } = t^{2} x \]





11986

\[ {}x^{\prime } = -x^{2} \]





11987

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]





11988

\[ {}x^{\prime }+p x = q \]





11989

\[ {}x y^{\prime } = k y \]





11990

\[ {}i^{\prime } = p \left (t \right ) i \]





11991

\[ {}x^{\prime } = \lambda x \]





11992

\[ {}m v^{\prime } = -m g +k v^{2} \]





11993

\[ {}x^{\prime } = k x-x^{2} \]





11994

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]





11995

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]





11996

\[ {}x^{\prime }+t x = 4 t \]





11997

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]





11998

\[ {}y^{\prime }+y \,{\mathrm e}^{-x} = 1 \]





11999

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]





12000

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]





12001

\[ {}x^{\prime }+5 x = t \]





12002

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]





12003

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]





12004

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]





12005

\[ {}1+{\mathrm e}^{x} y+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]





12006

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-y \sin \left (x \right ) = 0 \]





12007

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]





12008

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]





12009

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]





12010

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]





12011

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]





12012

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {x^{2}+t^{2}}}{t x} \]





12013

\[ {}x^{\prime } = k x-x^{2} \]





12112

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]





12113

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]





12114

\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \]





12115

\[ {}x y^{\prime }+y = x^{3} \]





12116

\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \]





12117

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]





12118

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]





12119

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]





12120

\[ {}x^{\prime } = x+\sin \left (t \right ) \]





12121

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]





12124

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]





12126

\[ {}y = x y^{\prime }+\frac {1}{y} \]





12128

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]





12131

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]





12132

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]





12133

\[ {}y^{\prime } = x +y^{2} \]





12134

\[ {}y^{\prime } = x y^{3}+x^{2} \]





12135

\[ {}y^{\prime } = x^{2}-y^{2} \]