3.9.48 Problems 4701 to 4800

Table 3.601: First order ode linear in derivative

#

ODE

Mathematica

Maple

12136

2x+2y1+(x+y2)y=0

12139

y=xy2

12140

y=(x5y)13+2

12141

(xy)yx2y=0

12142

x+5x=10t+2

12143

x=xt+x2t3

12146

y=3x4y23x4y3

12147

xxcot(t)=4sin(t)

12149

y3yx+x3y2=0

12151

x2y+(y2x2+x)y=0

12152

3y2x+2y(y23x)y=0

12153

(xy)yx2y=0

12154

y=x+y3x+y+1

12155

xy+yy2ln(x)=0

12156

(x21)y+2xycos(x)=0

12157

(4y+2x+3)y2yx1=0

12158

(y2x)yy+x2=0

12159

(x2+y2)y+2xy=0

12160

3y2yx+y32x=0

12212

y=yex+y(x2+1)

12213

x2y=1+y2

12214

y=sin(xy)

12215

x(ey+4)=ex+yy

12216

y=cos(x+y)

12217

xy+y=xy2

12218

y=tln(y2t)+t2

12219

y=xey2x

12220

y=ln(xy)

12221

x(y+1)2=(x2+1)yeyy

12228

ycos(x)+yex2=sinh(x)

12230

yy=1

12232

5yxy=0

12317

2y+y=et2

12321

yy=e2t

12323

y+y=Heaviside(t)Heaviside(t2)

12324

y2y=4t(Heaviside(t)Heaviside(t2))

12344

10Q+100Q=Heaviside(1+t)Heaviside(t2)

12418

y+cos(x)y=sin(2x)2

12426

yxy=0

12427

(1+u)v+(1v)uv=0

12428

1+y(1x)y=0

12429

(t2+t2x)x+x2+tx2=0

12430

ya+x2y=0

12431

z(a2+t2)z=0

12432

y=1+y2x2+1

12433

1+s2ts=0

12434

r+rtan(t)=0

12435

(x2+1)y1y2=0

12436

x2+1y1y2=0

12437

3extan(y)+(ex+1)sec(y)2y=0

12438

xxy2+(yx2y)y=0

12439

yx+(x+y)y=0

12440

y+x+xy=0

12441

x+y+(yx)y=0

12442

y+xy=x2+y2

12443

8y+10x+(5y+7x)y=0

12444

2sts+ts=0

12445

ts+ts=0

12446

y2yx=x3+y3

12447

xcos(yx)(xy+y)=ysin(yx)(y+xy)

12448

3y7x+7(3x7y3)y=0

12449

x+2y+1(4y+2x+3)y=0

12450

x+2y+1(2x3)y=0

12451

yxyx2+y2=m

12452

yy+xx2+y2=m

12454

yy=x+x2+y2

12455

y2y1+x=(1+x)3

12456

yayx=1+xx

12457

(x2+x)y+(2x21)yax3=0

12458

scos(t)+ssin(t)=1

12459

s+scos(t)=sin(2t)2

12460

ynyx=exxn

12461

y+nyx=axn

12462

y+y=ex

12463

y+(2x+1)yx21=0

12464

y+xy=y3x3

12465

(x2+1)yxy+axy2=0

12466

3y2yay3x1=0

12467

y(x2y3+xy)=1

12468

xy=(yln(x)2)y

12469

yycos(x)=y2cos(x)(1sin(x))

12470

x2+y+(x2y)y=0

12471

y3x2(4yx)y=0

12472

(y3x)y=y

12473

y2(xy)21x+(1yx2(xy)2)y=0

12474

6xy2+4x3+3(2x2y+y2)y=0

12475

x(x+y)2+(y+2x)y(x+y)2=0

12476

1x2+3y2x4=2yyx3

12477

x2y(xy)2y2(xy)2=0

12478

yy+x=yx2+y2xyx2+y2

12485

y=xy+y

12488

y=2yx3

12540

x2y(xy)2y2(xy)2=0

12543

(x2+1)yxyα=0

12544

xcos(yx)y=ycos(yx)x

12546

xy+yy2ln(x)=0

12547

2x+2y1+(x+y2)y=0

12548

3extan(y)+(ex+1)sec(y)2y=0

12552

y=x+y2

12553

y+yx=ex