# |
ODE |
Mathematica |
Maple |
\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -5 y\right )^{\frac {1}{3}}+2 \] |
✓ |
✓ |
|
\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+5 x = 10 t +2 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \] |
✓ |
✓ |
|
\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x y\right ) \] |
✗ |
✗ |
|
\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (x y\right ) \] |
✗ |
✗ |
|
\[ {}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \] |
✓ |
✓ |
|
\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y-a +x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x +x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t -s+t s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } x = x^{3}+y^{3} \] |
✓ |
✓ |
|
\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y-x y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \] |
✓ |
✓ |
|
\[ {}\frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}} = m \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {a y}{x} = \frac {1+x}{x} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \] |
✓ |
✓ |
|
\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = y^{3} x^{3} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \] |
✓ |
✓ |
|
\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3}-x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \] |
✓ |
✓ |
|
\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime }+x = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \] |
✓ |
✓ |
|
\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \] |
✓ |
✓ |
|
\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \] |
✓ |
✓ |
|