# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+4 y = 8 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-3 x -2 y+6 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+9 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = y^{2}+9 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x -1+2 x y-y \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x y^{2}+x \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = 2 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x y^{2}-9 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 200 y-2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-3 x -2 y+6 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y^{2} x^{2} = -3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y^{2} x^{2} = 3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 200 y-2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = -10 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x -1+2 x y-y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \] |
✓ |
✓ |
|
\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime }-x y^{2} = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\left (x y+3 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x y+3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y+8 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = y^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\cos \left (x^{2}\right ) = 827 y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y+16 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+3 y-10 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {x}+3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (5 x +2\right ) y = \frac {20}{x} \] |
✓ |
✓ |
|
\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = 6 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+3 y = 20 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+\cos \left (x \right ) x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+6 x y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y = \sqrt {x}\, \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2} {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \] |
✓ |
✓ |
|
\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\left (y-x \right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-x y = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \] |
✓ |
✓ |
|
\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -y}{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 3 y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y \cot \left (x \right ) = 6 \cos \left (x \right ) y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \] |
✓ |
✓ |
|
\[ {}\left (y-x \right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x y+x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -y+3\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x = 2 \sqrt {x^{2}+y} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \] |
✓ |
✓ |
|