3.9.54 Problems 5301 to 5400

Table 3.613: First order ode linear in derivative




#

ODE

Mathematica

Maple





13403

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]





13404

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]





13405

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]





13406

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]





13407

\[ {}2 x y^{3}+4 x^{3}+3 y^{2} y^{\prime } x^{2} = 0 \]





13408

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]





13409

\[ {}1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]





13410

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]





13411

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]





13412

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]





13413

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]





13414

\[ {}1+y^{4}+y^{3} y^{\prime } x = 0 \]





13415

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]





13416

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]





13417

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]





13418

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]





13419

\[ {}2 x \left (y+1\right )-y^{\prime } = 0 \]





13420

\[ {}2 y^{3}+\left (4 y^{3} x^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]





13421

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]





13422

\[ {}6+12 y^{2} x^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]





13423

\[ {}x y^{\prime } = 2 y-6 x^{3} \]





13424

\[ {}x y^{\prime } = 2 y^{2}-6 y \]





13425

\[ {}4 y^{2}-y^{2} x^{2}+y^{\prime } = 0 \]





13426

\[ {}y^{\prime } = \sqrt {x +y} \]





13427

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]





13428

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+y^{2} x^{2}} \]





13429

\[ {}y^{\prime } = y^{2}-2 x y+x^{2} \]





13430

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]





13431

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]





13432

\[ {}x^{3}+y^{3}+y^{2} y^{\prime } x = 0 \]





13433

\[ {}3 y-x^{3}+x y^{\prime } = 0 \]





13434

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]





13435

\[ {}3 x y^{3}-y+x y^{\prime } = 0 \]





13436

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]





13437

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]





13438

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]





13439

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]





13440

\[ {}y^{\prime } = \frac {3 y}{1+x}-y^{2} \]





13441

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]





13442

\[ {}\sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0 \]





13443

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]





13444

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]





13445

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]





13446

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]





13447

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]





13448

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]





13449

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]





13450

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]





13451

\[ {}y^{2}+1-y^{\prime } = 0 \]





13452

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]





13453

\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \]





13454

\[ {}\left (2+x \right ) y^{\prime }-x^{3} = 0 \]





13455

\[ {}y^{3} y^{\prime } x = y^{4}-x^{2} \]





13456

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]





13457

\[ {}2 y-6 x +\left (1+x \right ) y^{\prime } = 0 \]





13458

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]





13459

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]





13460

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]





13461

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]





13462

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]





13463

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]





13464

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]





13465

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]





13466

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]





13467

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]





13468

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]





13469

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]





13470

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]





13471

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]





13472

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]





13530

\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \]





13849

\[ {}y^{\prime }+4 y = 0 \]





13850

\[ {}y^{\prime }-2 y = t^{3} \]





13851

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]





13884

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]





13885

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]





13889

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1





13892

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]





13893

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]





13896

\[ {}y^{\prime }+2 y = 4 \delta \left (-1+t \right ) \]





13899

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]





14046

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]





14052

\[ {}2 x -1-y^{\prime } = 0 \]





14053

\[ {}2 x -y-y y^{\prime } = 0 \]





14054

\[ {}y^{\prime }+2 y = 0 \]





14055

\[ {}y^{\prime }+x y = 0 \]





14056

\[ {}y^{\prime }+y = \sin \left (x \right ) \]





14066

\[ {}y^{\prime } = -\frac {x}{y} \]





14067

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]





14068

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]





14069

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]





14070

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]





14071

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]





14072

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]





14073

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]





14074

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]





14075

\[ {}y^{\prime } = x \ln \left (x \right ) \]





14076

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]





14077

\[ {}y^{\prime } = \frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \]





14078

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]