3.9.58 Problems 5701 to 5800

Table 3.621: First order ode linear in derivative

#

ODE

Mathematica

Maple

14407

y=e5ty4

14408

1x5+1x3=(2y46y9)y

14409

y=ye2tln(y)

14410

y=(47x)(2y3)(1+x)(2x5)

14411

y+3y=10sin(t)

14412

3t+(t4y)y=0

14413

yt+(t+y)y=0

14414

yx+y=0

14415

y2+(ty+t2)y=0

14416

r=r2+t2rt

14417

x=5txx2+t2

14418

t2y+(t+y)y=0

14419

t2y+sin(t)+(t33cos(y))y=0

14420

tan(y)t+(tsec(y)2+1)y=0

14421

tln(y)+(t22y+1)y=0

14422

y+y=5

14423

y+ty=t

14424

x+xy=y2

14425

tr+r=tcos(t)

14426

yy=ty3

14427

y+y=ety2

14429

yty=2y2ln(t)

14432

2xy2+(2yx)y=0

14433

cos(ty)+(1cos(ty))y=0

14434

etyy2t+tetyy=0

14435

sin(y)ycos(t)+(tcos(y)sin(t))y=0

14436

y2+(2ty2cos(y)sin(y))y=0

14437

yt+ln(y)+(ty+ln(t))y=0

14438

y=y2x

14439

y=xy

14440

y=x+y13

14441

y=sin(x2y)

14442

y=ty3

14443

y=ty3

14444

y=yt2

14568

y4y=t2

14569

y+y=cos(2t)

14570

yy=e4t

14571

y+4y=e4t

14572

y+4y=te4t

14934

y=x2+y2

14935

y=xy

14936

y=y+3y13

14937

y=xy

14938

y=x2yx

14939

y=1y2

14940

y=y+1xy

14941

y=sin(y)cos(x)

14942

y=1cot(y)

14943

y=(3xy)131

14944

y=sin(xy)

14945

xy+y=cos(x)

14946

y+2y=ex

14947

(x2+1)y+xy=2x

14948

y=1+x

14949

y=x+y

14950

y=yx

14951

y=x2y+32

14952

y=(y1)2

14953

y=(y1)x

14954

y=x2y2

14955

y=cos(xy)

14956

y=yx2

14957

y=x2+2xy

14958

y=y+11+x

14959

y=x+yxy

14960

y=1x

14961

y=2xy

14962

y=x2+y

14963

y=yx

14964

y=1

14965

y=1x

14966

y=y

14967

y=y2

14968

y=x2y2

14969

y=x+y2

14970

y=x+y

14971

y=2y2x23

14972

xy=2xy

14973

1+y2+(x2+1)y=0

14974

1+y2+xyy=0

14975

ysin(x)cos(x)y=0

14976

1+y2=xy

14977

x1+y2+yyx2+1=0

14978

x1y2+yx2+1y=0

14979

eyy=1

14980

yln(y)+xy=1

14981

y=ax+y

14982

ey(x2+1)y2x(1+ey)=0

14983

2x1y2=(x2+1)y

14984

exsin(y)3+(1+e2x)cos(y)y=0

14985

y2sin(x)+cos(x)2ln(y)y=0

14986

y=sin(xy)

14987

y=ax+by+c

14988

(x+y)2y=a2

14989

xy+y=a(xy+1)

14990

a2+y2+2xaxx2y=0

14991

y=yx

14999

x2ycos(y)+1=0

15000

x2y+cos(2y)=1