3.20.12 Problems 1101 to 1200

Table 3.751: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

5964

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

5965

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

5966

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

5967

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

5968

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

5969

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

5970

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

5971

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

5972

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

5973

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

5974

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

5975

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

5976

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

5977

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

5978

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

5979

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

5980

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

5981

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

5982

\[ {}y^{\prime \prime }+y = 0 \]

5983

\[ {}y^{\prime \prime }-y = 0 \]

5984

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

5985

\[ {}y^{\left (5\right )}+2 y = 0 \]

5986

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

5987

\[ {}y^{\prime \prime \prime }+y = 0 \]

5988

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

5989

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

5990

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

5991

\[ {}y^{\prime \prime \prime }-y = x \]

5992

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

5993

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

5994

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

5995

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

5996

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

5997

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

5998

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

5999

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

6000

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

6001

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

6002

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \cos \left (2 x \right ) x \]

6003

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

6004

\[ {}y^{\prime \prime \prime } = x^{2}+\sin \left (x \right ) {\mathrm e}^{-x} \]

6005

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

6091

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

6094

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

6109

\[ {}y^{\prime \prime }+4 y = 0 \]

6110

\[ {}y^{\prime \prime }-4 y = 0 \]

6136

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6138

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

6155

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

6239

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

6269

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

6270

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6271

\[ {}y^{\prime \prime }+8 y = 0 \]

6272

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6273

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6274

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

6275

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6276

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

6277

\[ {}y^{\prime \prime }+y = 0 \]

6278

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

6279

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

6280

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6281

\[ {}y^{\prime \prime } = 4 y \]

6282

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

6283

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6285

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6286

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

6287

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6288

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6289

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

6290

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6291

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

6292

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

6302

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

6303

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

6304

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

6305

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

6306

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

6307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

6308

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

6309

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

6310

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

6311

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

6312

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

6313

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

6314

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

6315

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

6316

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

6317

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

6318

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

6319

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

6320

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

6321

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

6322

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

6323

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

6324

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

6325

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

6326

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

6327

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]